
Mercury BLASTN: Fast Streaming
DNA Sequence Comparison

Jeremy Buhler*, Joe Lancaster*, Arpith
Jacob*, and Roger Chamberlain*†

*Washington University in St. Louis
†BECS Technology, Inc.

Supported by NIH award 1-R42-HG003225-01 and NSF awards CCF-0427794 and DBI-0237902
Dr. Chamberlain is a principal of BECS Technology, Inc.

The Big Idea

 DNA sequence comparison: target for
high-performance computing

 BLASTN is the standard s/w solution

 Our FPGA impl delivers comparable
results in less time on realistic analyses

Overview

 Background and Motivation

 Methods: Mercury BLASTN

 Results: end-to-end performance

 Perspective: opportunities for
streaming computation on biosequences

Application Goal

 Discover similarity between (parts of)
two DNA sequences

 Why? Evidence of common ancestry,
perhaps similar biological function

…agaggtttt-attgcatgattcta--cta…

…actgaaattg-tgtacagattctccacta…

Overview of Comparison Task

Comparison
engine

DB stream

query alignments

 Input
 Query sequence: 102 - 109 DNA bases

 Database stream: 10
9
- 10

11
bases

 Output
 alignments of similar substrings in query/db

agaggtttt… agaggtt-tt

acag-ttatt

acagttattctatacctagtatacc
tatggctaggtcttatggxaccata

ctttaggccattgttacccagtactc…

Measuring Sequence Similarity

 Classical algorithm is Smith-Waterman
(DP edit distance computation)

 High cost of S-W led to development of
faster heuristics for searching an entire
database, most notably…

BasicLocalAlignmentSearchTool
[A et al. ’90, AG ’96, A et al. ’98]

Quantifying BLAST’s Advantage

Time to compare human vs mouse genomes
(~1.5 billion bases each after prefiltering)

Smith-Waterman Software

(on one modern x86 core)
~500 years

Smith-Waterman Hardware

(fastest published FPGA impls)
~5 years

NCBI BLASTN Software

(on one modern x86 core)
~10 days

Query: agagtcttgcatQuery: agagtcttgcat

The BLASTN Filter Pipeline

Ungapped
Extension

Gapped
Extension

Word
Matching

database alignmentsw-mers HSPs

Stage 2Stage 1 Stage 3

DATA

COSTDatabase: actgagactcttgaatactgagactcttgaat

agtcttgca

actcttgaa

w-mer: tcttgHSP:alignment:

agagtcttgca

aga-tcttgaa

Why Build a Faster BLAST?

 Databases are
growing
exponentially

 Comparisons
involve more
genomes (e.g.
UCSC human vs
28 species)

100

1000

10000

100000

1992

1994

1996

1998

2000

2002

2004

D
N

A
 B

a
s
e
s
 (

m
il
li
o

n
s
)

Source: NCBI

Growth of NCBI GenBank

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

How to Accelerate BLAST

 Use many commodity CPUs in parallel
[e.g. mpiBLAST, bglBLAST]

 Use pipeline of specialized processors

 less hardware for same performance

 less power, less heat

 smaller footprint, lower maintenance

Our Contributions

 Mercury BLAST: high performance
streaming architecture for BLASTN
(and BLASTP)

 Fully implemented as FPGA/software codesign

 End-to-end tests of both speed and accuracy
vs NCBI BLASTN software

Overview

 Background and Motivation

 Methods: Mercury BLASTN

 Results: end-to-end performance

 Perspective: opportunities for
streaming computation on biosequences

Hardware/Software Division

Ungapped
Extension

Gapped
Extension

Word
Matching

database alignmentsw-mers HSPs

Stage 2Stage 1 Stage 3

83.9% 15.9% 0.2%

Software Execution Time Profile

Hardware/Software Division

Ungapped
Extension

Gapped
Extension

Word
Matching

database alignmentsw-mers HSPs

Stage 2Stage 1 Stage 3

FPGA
platform

Host
CPU

83.9% 15.9% 0.2%

History of Mercury BLAST

SNAPI ’03
Mercury platform

ASAP ’04
BLASTN word matching

MSP ’05
BLASTN/P ungapped

FCCM ’07
BLASTP word matching & end-to-end

FPL ’07 (poster)
BLASTP gapped

RSSI ’07
BLASTN end-to-end

Word Matching [K et al. ’04]

 Goal: find strings of length w in DB that
also occur in query

 Basic approach: SRAM hash table built
from query (limited bandwidth to FPGA!)

 Accelerant: Bloom filters on FPGA
eliminate ~97% of lookups into hash table

Stage 1 Execution

Word
Generation

Bloom
Filters

Hash
Lookup

database DB
words

DB
words

(filtered)

word
matches

Stage 1 Execution

Word
Generation

Bloom
Filters

Hash
Lookup

database DB
words

DB
words

(filtered)

word
matches

Probable
match to

query?

Stage 1 Execution

Word
Generation

Bloom
Filters

Hash
Lookup

database DB
words

DB
words

(filtered)

word
matches

Locate
words in

query

Ungapped Extension [L et al. ’05]

 Linear-time dynamic programming

 Systolic array design to pipeline DP

 DP limited to fixed-size window,
unlike BLAST software

NCBI vs Mercury
Ungapped Extension

NCBI vs Mercury
Ungapped Extension

NCBI vs Mercury
Ungapped Extension

NCBI vs Mercury
Ungapped Extension

NCBI vs Mercury
Ungapped Extension

NCBI vs Mercury
Ungapped Extension

NCBI vs Mercury
Ungapped Extension

Stage 2 Architecture

extracts
windows of
query, DB

to compare

scores of
individual base

match/mismatches

systolic array
for DP

Is best
ungapped
alignment

good enough
to report?

Software Wrapper

 Front end, stage 3 use codebase of
NCBI BLAST

 FPGA design replaces software
stages 1 and 2

 Threads pipeline query prep, FPGA
execution, and software stage 3 on
different queries

Overview

 Background and Motivation

 Methods: Mercury BLASTN

 Results: end-to-end performance

 Perspective: opportunities for
streaming computation on biosequences

Mercury BLASTN
Implementation

 FPGA firmware
 Functional modules coded in VHDL

 running on Virtex II 6000-6 (AvNet devel board)

 connected to host via PCI-X bus

 comm. infrastructure by Exegy, Inc.

 Host system
 dual 2.0 GHz AMD Opteron

 (app uses < 10% of CPUs)

 running Linux w/Exegy driver for FPGA

 software based on NCBI BLASTN 2.2.10

Baseline for Comparison

 One core of Intel Pentium D 3.0 GHz

 ~one h/w generation newer than our
FPGA board

 Running Linux

 NCBI BLASTN 2.2.15 (2.5x faster
than 2.2.10!)

Experiment #1 –
mRNA vs mRNA (RefSeq v21)

 Q: 3975 human mRNAs (9 Mbase)

 DB: all other vertebrate mRNAs (586 Mbase)

 Med-low output stringency (E = 10-5)

 Why? Gene clustering, discovering variants
in gene splicing across species

Results

Mercury
BLASTN

time

Speedup vs
baseline

Total #
alignments

found

Overlap
with

baseline
output

20 min 5.05x 6.2x105 98.64%

speed ~= 5 modern CPU cores

Experiment #2 –
Genome vs Genome

 Q: Human chromosome 22 (21 Mbase)

 DB: mouse genome (1.5 Gbase)

 Med-low output stringency (E = 10-5)

 Why? Assigning orthology,
detecting rearrangements

Results

Mercury
BLASTN

time

Speedup vs
baseline

Total #
alignments

found

Overlap
with

baseline
output

19 min 11.47x 9726 99.01%

speed ~= 10 modern CPU cores

Where’s the Bottleneck?

 Each 17.5 kbase of query data requires
one pass over whole database

 Query chunk size limited by stage 1
SRAM, Bloom filter blockRAM

 Each pass over DB saturates PCI-X link
to card (> 700 Mbytes/sec)

How Will We Go Faster?

 New Exegy board: 2x Virtex 4 + SRAM

 Each core supports 4x larger query

 Hence, 8x more query per DB pass!

Ungapped
Extension

Gapped
Extension

Word
Matching

database
alignments

w-mers
HSPs

Ungapped
Extension

Word
Matching

w-mers

Query 1

Query 2

Overview

 Background and Motivation

 Methods: Mercury BLASTN

 Results: end-to-end performance

 Perspective: opportunities for
streaming computation on biosequences

It’s All About Annotation

Genomic DNA
sequence

Known feature
databases

Annotated sequences

insight
data resources

Generic Search Problem

 Given sequence(s) and DB of features…

 Label parts of sequence that are highly
similar to some feature from DB

 Requires description of feature,
measure of similarity

Generalized Features

 For BLAST, a feature is described by a
single known sequence

 Can instead use a feature model that
describes range of possible sequences

 (Typically a probabilistic model)

Typical Feature Models

Data Model Search Tool

DNA/protein
aligned w/o gaps

PSSM PSI-BLAST

DNA/protein
aligned w/gaps

Profile HMM HMMER

DNA/protein with
evolutionary tree

phyloHMM Phast (sort of)

RNA structure SCFG Infernal

Relevance of Mercury BLAST

 Many search apps look like BLAST

 Pipelined structure already present
(PSI-BLAST) or could be designed
(HMMER, Phast, Infernal)

 Mercury BLAST provides case study
for how to accelerate these apps

Specific Challenges

 More complex measures of similarity
(e.g. mutual information, phylogeny)

 Design filtering stages (like word
matching) for newer DP-based tools

 Simplify FPGA development to serve
limited application markets

Conclusions

 Order-of-magnitude BLASTN speedup,
w/further 8x expected soon

 Answers 98.5%+ identical to software

 Design approach informs other high-
performance biosequence search apps

Mercury BLAST Project

Faculty
• Jeremy Buhler
• Roger Chamberlain

Students
• Arpith Jacob
• Joe Lancaster
• Brandon Harris (graduated)
• Praveen Krishnamurthy (graduated)

Corporate Partners
• BECS Technology, Inc.
• Exegy, Inc.

Funding Agencies
• NIH NHGRI
• NSF BIO
• NSF CISE

Thank You!

