
Portable Library Development for 
Reconfigurable Computing Systems

Proshanta Saha, Esam El-Araby, Miaoqing Huang, Mohamed Taher, Tarek El-Ghazawi,

The George Washington University

Chang Shu, Kris Gaj, 

George Mason University

Alan Michalski, and Duncan Buell

University of South Carolina



Acknowledgment

• SRC
– Dan Poznanovic

– David Caliga

– Jeff Hammes

– Paul Gage

• Cray
– Dave Strenski

– Greg Woods

• SGI
– Brian Larson

– Chris Lindahl

– Matthias Fouquet-Lapar

– Alan Mayer

– Bruce Losure

– Dick Riegner
July 19 2007 2RSSI 2007



Outline

• Introduction

• Background

• Creating Portable Libraries for RCs 
– Domain Analysis

– Resolving Porting Concerns

– Standardizing Interface

– Benchmarking and Testing

– Establishing Mechanisms for Collaboration

– Distribution and Licensing

• Case Study

• Concluding Remarks

July 19 2007 3RSSI 2007



Introduction

• Constantly changing technology in RC domain pose 
significant challenges

– Lack of standard interfaces make porting applications to 
new architectures difficult

– Developers face constantly changing design languages and 
tools

• Code re-write even in the same application domain 
prevalent

– Lack of standard optimized libraries for RC systems

– Hardware implementations difficult to generalize

July 19 2007 4RSSI 2007



Outline

• Introduction

• Background

• Creating Portable Libraries for RCs 
– Domain Analysis

– Resolving Porting Concerns

– Standardizing Interface

– Benchmarking and Testing

– Establishing Mechanisms for Collaboration

– Distribution and Licensing

• Case Study

• Concluding Remarks

July 19 2007 5RSSI 2007



Background

• Library efforts taken on by several groups
– Chip manufacturers

• Xilinx, Altera, Chameleon, etc.

– System and board vendors
• SRC, SGI, Cray, Nallatech, AMS, Starbridge, etc.

– Independent Software Vendors (ISV)
• Impulse, Mitrionics, DSPLogic, Celoxica, etc.

– RC Users and Enthusiasts
• OpenCores, etc. 

• Porting to current architectures and platforms is non-trivial 
– Different data/memory access standards
– Varying number, type, and size of memory banks
– Tool chain support not uniform across platforms

July 19 2007 6RSSI 2007



Outline

• Introduction

• Background

• Creating Portable Libraries for RCs
– Domain Analysis

– Resolving Porting Concerns

– Standardizing Interface

– Benchmarking and Testing

– Establishing Mechanisms for Collaboration

– Distribution and Licensing

• Case Study

• Concluding Remarks

July 19 2007 7RSSI 2007



Creating Portable Libraries for RCs

• Key concerns for portable library development

– Library scope and utility

– Performance vs. Portability

– Porting concerns and standardization

– Collaboration and Intellectual Property (IP)

– Distribution format

– Licensing worries

July 19 2007 8RSSI 2007



Domain Analysis

• Limiting scope of the library
– Domain selection

• Biomedical, Cryptography, Image and Signal processing, etc.

– Target applications
• Impact on scientific community

– Analyzing application characteristics
• IO Bound, Memory Bound, etc.

• Finding balance between performance and re-use
– Analyzing applications for overlap in functionality

– Analyzing utility of reusable core 

– Effort required to by end user to instantiate efficient cores

July 19 2007 9RSSI 2007



Addressing Porting Concerns

• Design cores with limited hardware assumptions
– Cores should meet a minimum 100MHz (10ns) time constraint
– Little to no assumption of hard cores should be made

• DSPs, PowerPC, FP units etc.
• Conservative assumption of BRAM size
• No assumption to the types of multipliers (MULTS, etc)

• Development language
– Design cores in HDL to ensure portability and limit duplication of efforts
– Assume netlist support universal across platforms

• Hardware Core Documentation
– Hardware assumptions taken (ex. multiplier size, BRAM size)
– Latency, clock speed, pipeline length, delays, optimization clues

• Limitations
– Universal portability is unrealistic, even from same vendor
– Designing cores to work around current hardware drawbacks will limit 

portability

July 19 2007 10RSSI 2007



Standardize Interface Definition

• Create interface definition guidelines

– Improve usability, readability, debugging, etc

– Increase collaboration

• Define handshaking protocols

– Busy, Wait, Done, Bypass ports

• Build in performance measurement mechanism

– Timer probes

• Modularize hardware cores

– Standardize bus interface

– Ease partial reconfiguration efforts

July 19 2007 11RSSI 2007



Benchmarking and Testing

• Benchmarks are important to identify portability vs. 
performance trade off
– End users can select hardware cores that best suit their needs
– Allows end users and contributors to predict performance on target 

hardware

• Tests are essential to hardware library builds
– Sanity tests provide quick verification and sufficient for small errors
– Regression tests are more thorough and can identify problems:

• Tool chain
• Cross library compatibility
• Performance

– Frequent builds can identify compatibility issues

July 19 2007 12RSSI 2007



Collaboration

• Source control software selection

– Project size

– Collaboration type (multiple sites, etc)

– Features required

– Vendor compatibility

• Access control and security

– Protecting user contributions

– Protecting early access contributions

– Protecting IPs

July 19 2007 13RSSI 2007



Distribution and Licensing

• Two approaches to library distribution
– Vendor specific distribution release

• Immediately usable in target architecture
• Optimized performance on target architecture

– Source code distribution release
• Requires end users to create necessary wrappers for target architecture
• Optimization depends on users knowledge of target architecture

• Choosing a licensing agreement
– Open source license
– Non-profit use license
– Proprietary license

• License compatibility
– Confusing precedence rules on open source licenses
– Bundling packages with different licensing agreements

July 19 2007 14RSSI 2007



Outline

• Introduction

• Background

• Creating Portable Libraries for RCs 
– Domain Analysis

– Resolving Porting Concerns

– Standardizing Interface

– Benchmarking and Testing

– Establishing Mechanisms for Collaboration

– Distribution and Licensing

• Case Study

• Concluding Remarks

July 19 2007 15RSSI 2007



Case Study

Platform
Number of 

FPGAs
FPGA Type

Maximum 

Frequency

RC System vs. Workstation

Cost Power Size

SRC6 4 XC2V6000 100MHz 200x 3.64x 33.3x

Cray XD1 6 XC2VP50 200MHz 100x 20x 95.8x

SGI RC100 6 XC4LX200 200MHz 400x 11.2x 34.5x

• Platforms used in Case Study:
– SRC6
– SGI RC100 RASC
– Cray XD1

• Library Packages
– Platform specific binary release for SRC6
– Platform independent source code release
– Available at http://hpc.gwu.edu/library

Testbed Specifications

July 19 2007 16RSSI 2007

http://hpc.gwu.edu/library


Domain Analysis

• Application domains selected in study include:
– Secret Key Ciphers
– Binary Galois Field Arithmetic
– Elliptic Curve Cryptography
– Long Integer Arithmetic
– Image Processing
– Bioinformatics
– Matrix Arithmetic

• Library scope narrowed with assistance from domain experts and RC community 
input
– Applications chosen based on impact on domain
– Application characterization (I/O bound, Memory bound, etc) also played key role in 

selection

• Core breakdown based on:
– Domain application analysis (overlap among applications, etc)
– Effort required by developer to create efficient designs using re-usable core from library
– Core utility (number of applications that can benefit from core)
– Resource utilization

July 19 2007 17RSSI 2007



Portability Concerns

• Library cores developed in either Verilog or VHDL 
– SRC6 Carte allows user macros to be defined in HDL 

– SGI RC100 Core Services provides top level modules to support 
user application written in HDL 

– Cray XD1 ufpapps provides scripts to support user application 
written in HDL 

• Library cores meet a minimum clock speed of 100Mhz 
(10ns)
– SRC6 supports 100MHz

– SGI RC100 and Cray XD1 support clock speeds upto 200MHz

July 19 2007 18RSSI 2007



Portability Concerns (2)

• Assumptions made on platforms
– Availability of basic hard core arithmetic units and modest BRAM size
– No assumptions of hard cores such as PPC, DSP, Rocket IO, etc
– No assumptions made on memory banks and peripherals

• Assumes vendor cores handle data transfer and I/O to/from peripherals

• A minimum set of files provided for each library core helps porting efforts:
.v/.vhd for Verilog/VHDL source code

.c/.cpp for Host C/C++ source code

.blk for black box interface file

.tex/.PDF for LaTeX/PDF documentation

test.c/.cpp for test code

Makefile for Makefile

• Separate auxiliary library necessary
– Namespace clashes for performance and timing functions
– Overloading not supported in C language

• Choosing a flexible and standard documentation format proved to be difficult
– LaTeX chosen for developer documentation to allow for automated updates
– PDF chosen for end user documentation

July 19 2007 19RSSI 2007



Collaboration

• Source control systems explored
– Concurrent Versions System (CVS)
– Subversion (SVN)

• CVS chosen primarily because of vendor support
– SRC Carte provides library build process

• Libraries built can be directly called without special setup 
procedures

• Regression tests and library builds can be stream lined

• Access control is enforced into three categories
– Development branch for latest alpha code
– Main library branch for release quality code
– IP and legacy branch for contributed code

July 19 2007 20RSSI 2007



Benchmark and Testing

• Testing proved to be essential in RCLib build process
– Short sanity tests allowed for quick verification
– Longer regression tests were essential:

• The number of tools in the tool chain requires thorough 
compatibility tests

– Synplicity, Xilinx PAR, C/C++ compilers, GNU Multi-precision (GMP) 
library, LiDIA library, OpenSSL library

• The number of libraries created, eight in total, required cross 
compile tests for compatibility

– Utilizing Binary Galois Field (GF2m) libraries with Elliptic Curve 
Cryptography Library(ECC) for example showed name space clashes in 
auxiliary functions (performance and timing)

– Frequent builds allowed for vendor library and user library 
compatibility checks

July 19 2007 21RSSI 2007



Benchmark and Testing (2)

• Benchmarking provided a performance gauge for RCLib
– Allows developers to gauge if library core resource utilization 

and performance

– Allows end users to see if upgrading to newer library release will 
provide additional benefits

• Benchmarking provided in two formats
– A quick benchmark to ensure that the general functionality of 

the core passes

– A thorough benchmark to ensure proper handling of all 
functionality, data types, and performance are tested

July 19 2007 22RSSI 2007



Licensing and Distribution

• Distribution formats
– Platform specific distribution – currently available for SRC6
– Platform independent distribution – HDL source code, black box files, documentation, 

test code, and test vectors

• Licensing challenges to packaging, a precedence issue
– Xilinx soft cores – Xilinx proprietary license
– SRC library support – SRC proprietary license
– GMP library – GNU GPL
– OpenSSL – BSD style license
– LiDIA – non-commercial license

• Third party and proprietary tools and libraries
– Users will be provided with a list of pre-requisites
– Software libraries are checked to ensure for maintenance and availability
– Soft core libraries from vendors and chip manufacturers are assumed to be available and 

installed

• Licensing chosen is LGPL to allow for the library to be binary compiled with third 
party libraries

July 19 2007 23RSSI 2007



Portable Libraries Developed

http://hpc.gwu.edu/library

http://hpc.gwu.edu/library


RCLib Cores

Secret Key Ciphers

Application Cores

IDEA

encryption

decryption

breaking

DES

encryption

decryption

breaking

RC5

key scheduling

encryption

decryption

breaking

Elliptic Curve Cryptography

Application Cores

Scalar 

Multiplication

Normal Basis

Polynomial Basis

Project to Affine
Normal Basis

Polynomial Basis

Point Addition
Normal Basis

Polynomial Basis

Point Doubling
Normal Basis

Polynomial Basis

July 19 2007 25RSSI 2007



RCLib Cores (2)

Binary Galois Field Arithmetic

Application Cores

P
o

ly
n

o
m

ia
l B

a
sis

Trinomial

Squaring

Multiplication

Inversion

Pentanomial

Squaring

Multiplication

Inversion

Special Field

Squaring

Multiplication

Inversion

NIST

Squaring

Multiplication

Inversion

N
o

rm
a

l 

B
a

sis NIST

Squaring

Multiplication

Inversion

Image Processing

Application Cores

Wavelet

Discrete Wavelet 

Transform

Inverse Discrete 

Wavelet Transform

Correlation and 

Histograming

2-D Convolution 

Operators

Gaussian Filter

Smoothing Filter

Sharpening Filter

Blurring Filter

Prewitt Filter

Sobel Edge Filter

Median Filter

Buffering Line Buffer

26RSSI 2007July 19 2007



RCLib Cores (3)

Long Integer Arithmetic

Application Cores

1024 bit

Montgomery Multiplier w/ Carry save adder

Montgomery Multiplier w/ Carry propagate adder

Modular Exponentiation w/ Carry save adder

Modular Exponentiation w/ Carry propagate adder

1536 bit

Montgomery Multiplier w/ Carry save adder

Montgomery Multiplier w/ Carry propagate adder

Modular Exponentiation w/ Carry save adder

Modular Exponentiation w/ Carry propagate adder

2048 bit

Montgomery Multiplier w/ Carry save adder

Montgomery Multiplier w/ Carry propagate adder

Modular Exponentiation w/ Carry save adder

Modular Exponentiation w/ Carry propagate adder

3027 bit

Montgomery Multiplier w/ Carry save adder

Montgomery Multiplier w/ Carry propagate adder

Modular Exponentiation w/ Carry save adder

Modular Exponentiation w/ Carry propagate adder

July 19 2007 27RSSI 2007



RCLib Cores (4)

Bioinformatics

Application Cores

Smith-Waterman
Scoring

Maximum Score Search

Matrix Arithmetic

Application Cores

Bit-Matrix
Bit-Matrix Multiplication

Bit-Matrix Transpose

Sorting

Application Cores

Sorting

Bitonic Sorting

Stream Sorting

Odd-Even Sorting

Heap Sorting

Quick Sorting

Scheduling Sorting Scheduler

July 19 2007 28RSSI 2007



Library Performance



Performance on SRC6

Application Speedup
Savings

Cost Power Size

Smith Waterman 1138 6x 313x 34x

DES Breaker 6757 34x 1856x 95.8x

IDEA Breaker 641 3x 176x 19x

RC5 Breaker 1140 6x 313x 34x

July 19 2007 30RSSI 2007



Performance on SGI RC100

Application Speedup
Savings

Cost Power Size

Smith Waterman 8723 22x 779x 253x

DES Breaker 38514 96x 3439x 1116x

IDEA Breaker 961 2x 86x 28x

RC5 Breaker 6838 17x 610x 198x

July 19 2007 31RSSI 2007



Performance on Cray XD1

Application Speedup
Savings

Cost Power Size

Smith Waterman 2794 28x 140x 29x

DES Breaker 12162 122x 608x 127x

IDEA Breaker 2402 24x 120x 25x

RC5 Breaker 2321 23x 116x 24x

July 19 2007 32RSSI 2007



Concluding Remarks

• In this work we detailed the proposed methodology for developing hardware 
library cores

• We outlined the issues related to creating a portable hardware library considering:

– domain analysis, code reuse, packaging, interface definition, portability, collaboration, 
benchmarking and testing, distribution and licensing

• Our case study showed that the process requires careful consideration and 
planning when collaborating with:

– A large group of developers

– Different system vendors

– Different chip vendors

– Different users

• Future support may include newer architectures from:

– SRC, Cray, SGI

– And potentially from DRC, Altera, etc.

• Work is also underway to define a unified layer between the user application core 
and the vendor interface services

July 19 2007 33RSSI 2007


