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What can they do FOR ME?
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What question is asked?

We’ve heard about these great things with 

FPGAs.  What can they do for my 

problem?

What can they do FOR ME?

How much effort will it cost to get the best 

performance out of it?

How much effort will it cost to find out if 

it’s worth porting my algorithm at all?
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What’s Different About FPGAs?

Which of these things apply to MY algorithm, in 

good or bad ways?

• Different programming styles

• Slower clock speeds

• Slower clocks→lower incoming 

bandwidths

• Wide parallelism 

• Deep parallelism
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The Real Question:

Is it likely enough that FPGA systems will 

help my code for someone to spend their 

time to understand the potential wide or 

deep parallel aspects it with respect to 

FPGAs?

NO                    MAYBE
Which items will cause a NO answer?

?
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What are the inherent problems in a 

code/hardware system?

Assuming the FPGA co-processor in a 

system is infinitely capable and 

programming is not an issue, what are 

the limitations of processing speed?
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Can we feed the abstract super-FPGA 

fast enough?  Considerations:

• Problem size

• Memory bandwidths

• Number of memory banks

• Memory speeds

• Latencies

• Algorithm efficiency (less data better)
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From the Domain Expert

• Problem size

• Algorithm efficiency (less data better)

How do we take knowledge of the hardware
(which we have) and knowledge of the 
algorithm (which the expert has) and put them 
together to answer the NO/MAYBE question?  
How can this be quantified?
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Model to Determine the speed of the algorithm:

• Finite memory bandwidths limit the incoming data and 

so constrain the maximum processing speed

• More than one layer of memory, more than one stage 

from RAM to processor

• MILC collaboration says that a machine must be able to 

sustain a certain “bytes per flop”.  How does that apply 

to systems with multiple layers?  How do we apply that 

to arbitrary codes?
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Model Assumptions

• Arbitrarily fast abstract processor

• Local store is fed through limited bandwidth from outside storage

processor
Local

Store

local rest of the world

input Whole problem
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Model Ignores:

• Temporary storage

• Outputs

• Data packaging time

• Programming difficulty
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Model Hardware Parameters

processor

Local

Store

(size μ)
Input

Whole problem

Total Size M

Total computations Z

Latency λ,

Bandwidth β
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Total Time to Calculate

• Total computational time cannot be less 

than total load time to load data M

• Total time may be greater if we need to 

load data more than once

• Characterize algorithm/code by 

computational density; number of 

computations per byte of input
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Computational Density Function

Computational density is the 
operations per byte of local 
store size

η(α) is the number of 
computations possible with a 
local store of size α

ρ(α) is then the “computational 
density” the number of 
computations per byte.  This 
is the efficiency of the 
computation in terms of cost 
of moving the data in

This assumes independence of 
steps in the calculation (more 
later)
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Algorithm Speed

• Average speed is operations per second

• Each operation requires an operator and 

input data

• Infinitely capable FPGA, infinite 

operations, finite incoming data 

bandwidth
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Computational Speed

σ is the upper limit of computational speed in terms of computations 
per second

Information about the interface layer and local store in μ, λ, and β

Information about the algorithm/code in the function ρ

The fraction βλ/μ gives the relative contribution of latency to 
transfers

This upper speed limited is calculated separately for each layer in the 
memory hierarchy represented by μ, λ, β
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Computational Speed

If βλ/μ<<1 (the latency is a small 

contribution to memory transfers) then 

the above equation is the speed upper 

bound for that algorithm for that layer in 

the memory hierarchy
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Measures Upper Performance Bound

• There are multiple layers in each memory hierarchy, each with a 

local store (cache) fed by a different bus

• Each potentially could be the bottleneck, the depending on how 

the parameters of that layer interact with the computational 

density function at that local store size

processor
Local

Store

(size μ1)

Latency λ1,

Bandwidth β1
Whole problem

Local

Store

(size μ2)

Latency λ2,

Bandwidth β2
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Data Interdependence

• Definition of computational density 

assumes that data is homogeneous and 

that multiple steps can be transferred at 

once; no dependencies on previous 

steps for in put data

• If that is broken, then the η(α) function 

does not increase past one iteration and 

the ρ(α) decreases with increasing α
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Simple Example Algorithm A

• Linear element-wise vector multiply (dot 

product)

float A[SIZE],B[SIZE],C[SIZE];

for(i=0;i<size;i++){

C[i]=A[i]*B[i];

}
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Algorithm A Computational Density

One operation per two input 

parameters of size s, 

linear in local store size:

Computational density 

function is constant, not a 

function of the local store 

size.  This is a purely 

streaming function

s
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Simple Example Algorithm B

• Square Matrix-matrix multiply

float A[DIM][DIM],B[DIM][DIM],C[DIM][DIM];

for(i=0;i<DIM;i++){

for(j=0;j<DIM;j++){

C[i][j]=0.0;

for(k=0;k<DIM;k++){

C[i][j]+=A[i][k]*B[k][j];

}

}

}
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Algorithm B Computational Density

Space required to hold 2 square 

matrix operands is 2sN2

NxN matrix multiply contains N3

computations: 

Computational density:

2sN
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Simple Example Algorithm C

• NxN interaction 

problem

• All inputs N particles 

interact with each 

other
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SRC MAP-C

FPGA FPGA

OBM OBM OBM OBM OBM OBM

OBM

SNAP
RAM
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SRC MAP-C Layer 1

FPGA FPGA

OBM OBM OBM OBM OBM OBM

OBM

SNAP

RAM

BRAM BRAM
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SRC MAP-C Layer 2

FPGA FPGA

OBM OBM OBM OBM OBM OBM

OBM

SNAP
RAM
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SRC MAP-C Parameters

λ1= 0 μ1= .6 MB  β1= 6.4 GB/s

λ2= 20μs μ2= 28 MB   β2= 1.4 GB/s

Thanks to SRC for the use of 

these numbers
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Algorithm A on MAP-C
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Algorithm B on MAP-C

s

Gops
sGBMBB 219)/4.6()6(.   

s
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sGBMBB 303)/4.1()28(2  
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Algorithm C on MAP-C

s

Tops
sGBMBCCC 88.1)/4.6()6(.)1,   

s

Tops
sGBMBCCC 1.19)/4.1()28() 222,  
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What Next?

• More specific examples

– NAMD

– MILC

• How does changing the code change the 

computational density?

– Compacting data raises graph

– Changing loop indexing changes step positions


