
National Center for Supercomputing Applications

Application and Hardware Analysis To

Predict Performance

Craig P. Steffen

NCSA Innovative Systems Laboratory

Reconfigurable Systems Summer Institute

July 20, 2007

National Center for Supercomputing Applications

What question is asked?

We’ve heard about these great things with

FPGAs. What can they do for my

problem?

What can they do FOR ME?

National Center for Supercomputing Applications

What question is asked?

We’ve heard about these great things with

FPGAs. What can they do for my

problem?

What can they do FOR ME?

How much effort will it cost to get the best

performance out of it?

National Center for Supercomputing Applications

What question is asked?

We’ve heard about these great things with

FPGAs. What can they do for my

problem?

What can they do FOR ME?

How much effort will it cost to get the best

performance out of it?

How much effort will it cost to find out if

it’s worth porting my algorithm at all?

National Center for Supercomputing Applications

What’s Different About FPGAs?

Which of these things apply to MY algorithm, in

good or bad ways?

• Different programming styles

• Slower clock speeds

• Slower clocks→lower incoming

bandwidths

• Wide parallelism

• Deep parallelism

National Center for Supercomputing Applications

The Real Question:

Is it likely enough that FPGA systems will

help my code for someone to spend their

time to understand the potential wide or

deep parallel aspects it with respect to

FPGAs?

NO MAYBE
Which items will cause a NO answer?

?

National Center for Supercomputing Applications

What are the inherent problems in a

code/hardware system?

Assuming the FPGA co-processor in a

system is infinitely capable and

programming is not an issue, what are

the limitations of processing speed?

National Center for Supercomputing Applications

Can we feed the abstract super-FPGA

fast enough? Considerations:

• Problem size

• Memory bandwidths

• Number of memory banks

• Memory speeds

• Latencies

• Algorithm efficiency (less data better)

National Center for Supercomputing Applications

From the Domain Expert

• Problem size

• Algorithm efficiency (less data better)

How do we take knowledge of the hardware
(which we have) and knowledge of the
algorithm (which the expert has) and put them
together to answer the NO/MAYBE question?
How can this be quantified?

National Center for Supercomputing Applications

Model to Determine the speed of the algorithm:

• Finite memory bandwidths limit the incoming data and

so constrain the maximum processing speed

• More than one layer of memory, more than one stage

from RAM to processor

• MILC collaboration says that a machine must be able to

sustain a certain “bytes per flop”. How does that apply

to systems with multiple layers? How do we apply that

to arbitrary codes?

National Center for Supercomputing Applications

Model Assumptions

• Arbitrarily fast abstract processor

• Local store is fed through limited bandwidth from outside storage

processor
Local

Store

local rest of the world

input Whole problem

National Center for Supercomputing Applications

Model Ignores:

• Temporary storage

• Outputs

• Data packaging time

• Programming difficulty

National Center for Supercomputing Applications

Model Hardware Parameters

processor

Local

Store

(size μ)
Input

Whole problem

Total Size M

Total computations Z

Latency λ,

Bandwidth β

National Center for Supercomputing Applications

Total Time to Calculate

• Total computational time cannot be less

than total load time to load data M

• Total time may be greater if we need to

load data more than once

• Characterize algorithm/code by

computational density; number of

computations per byte of input

National Center for Supercomputing Applications

Computational Density Function

Computational density is the
operations per byte of local
store size

η(α) is the number of
computations possible with a
local store of size α

ρ(α) is then the “computational
density” the number of
computations per byte. This
is the efficiency of the
computation in terms of cost
of moving the data in

This assumes independence of
steps in the calculation (more
later)

National Center for Supercomputing Applications

Algorithm Speed

• Average speed is operations per second

• Each operation requires an operator and

input data

• Infinitely capable FPGA, infinite

operations, finite incoming data

bandwidth

National Center for Supercomputing Applications

Computational Speed

σ is the upper limit of computational speed in terms of computations
per second

Information about the interface layer and local store in μ, λ, and β

Information about the algorithm/code in the function ρ

The fraction βλ/μ gives the relative contribution of latency to
transfers

This upper speed limited is calculated separately for each layer in the
memory hierarchy represented by μ, λ, β

National Center for Supercomputing Applications

Computational Speed

If βλ/μ<<1 (the latency is a small

contribution to memory transfers) then

the above equation is the speed upper

bound for that algorithm for that layer in

the memory hierarchy

National Center for Supercomputing Applications

Measures Upper Performance Bound

• There are multiple layers in each memory hierarchy, each with a

local store (cache) fed by a different bus

• Each potentially could be the bottleneck, the depending on how

the parameters of that layer interact with the computational

density function at that local store size

processor
Local

Store

(size μ1)

Latency λ1,

Bandwidth β1
Whole problem

Local

Store

(size μ2)

Latency λ2,

Bandwidth β2

National Center for Supercomputing Applications

Measures Upper Performance Bound

• There are multiple layers in each memory hierarchy, each with a

local store (cache) fed by a different bus

• Each potentially could be the bottleneck, the depending on how

the parameters of that layer interact with the computational

density function at that local store size

processor
Local

Store

(size μ1)

Latency λ1,

Bandwidth β1
Whole problem

Local

Store

(size μ2)

Latency λ2,

Bandwidth β2

National Center for Supercomputing Applications

Measures Upper Performance Bound

• There are multiple layers in each memory hierarchy, each with a

local store (cache) fed by a different bus

• Each potentially could be the bottleneck, the depending on how

the parameters of that layer interact with the computational

density function at that local store size

processor
Local

Store

(size μ1)

Latency λ1,

Bandwidth β1
Whole problem

Local

Store

(size μ2)

Latency λ2,

Bandwidth β2

National Center for Supercomputing Applications

Data Interdependence

• Definition of computational density

assumes that data is homogeneous and

that multiple steps can be transferred at

once; no dependencies on previous

steps for in put data

• If that is broken, then the η(α) function

does not increase past one iteration and

the ρ(α) decreases with increasing α

National Center for Supercomputing Applications

Simple Example Algorithm A

• Linear element-wise vector multiply (dot

product)

float A[SIZE],B[SIZE],C[SIZE];

for(i=0;i<size;i++){

C[i]=A[i]*B[i];

}

National Center for Supercomputing Applications

Algorithm A Computational Density

One operation per two input

parameters of size s,

linear in local store size:

Computational density

function is constant, not a

function of the local store

size. This is a purely

streaming function

s

s

s

2

2

National Center for Supercomputing Applications

Simple Example Algorithm B

• Square Matrix-matrix multiply

float A[DIM][DIM],B[DIM][DIM],C[DIM][DIM];

for(i=0;i<DIM;i++){

for(j=0;j<DIM;j++){

C[i][j]=0.0;

for(k=0;k<DIM;k++){

C[i][j]+=A[i][k]*B[k][j];

}

}

}

National Center for Supercomputing Applications

Algorithm B Computational Density

Space required to hold 2 square

matrix operands is 2sN2

NxN matrix multiply contains N3

computations:

Computational density:

2sN

2
3

3

2

s
N

s
N

 2
3

2
3

2

2

s

s

National Center for Supercomputing Applications

Simple Example Algorithm C

• NxN interaction

problem

• All inputs N particles

interact with each

other

22

22 N
N

N

sN

s

α
N

2

2

22 s

s

22s

National Center for Supercomputing Applications

SRC MAP-C

FPGA FPGA

OBM OBM OBM OBM OBM OBM

OBM

SNAP
RAM

National Center for Supercomputing Applications

SRC MAP-C Layer 1

FPGA FPGA

OBM OBM OBM OBM OBM OBM

OBM

SNAP

RAM

BRAM BRAM

National Center for Supercomputing Applications

SRC MAP-C Layer 2

FPGA FPGA

OBM OBM OBM OBM OBM OBM

OBM

SNAP
RAM

National Center for Supercomputing Applications

SRC MAP-C Parameters

λ1= 0 μ1= .6 MB β1= 6.4 GB/s

λ2= 20μs μ2= 28 MB β2= 1.4 GB/s

Thanks to SRC for the use of

these numbers

National Center for Supercomputing Applications

Algorithm A on MAP-C

s

Gops
sGB

Bs
8.0)/4.6(

)4(2

1

2

1

s

Gops
sGB

B
46.)/4.1(

)4(2

1

National Center for Supercomputing Applications

Algorithm B on MAP-C

s

Gops
sGBMBB 219)/4.6()6(.

s

Gops
sGBMBB 303)/4.1()28(2

National Center for Supercomputing Applications

Algorithm C on MAP-C

s

Tops
sGBMBCCC 88.1)/4.6()6(.)1,

s

Tops
sGBMBCCC 1.19)/4.1()28() 222,

National Center for Supercomputing Applications

What Next?

• More specific examples

– NAMD

– MILC

• How does changing the code change the

computational density?

– Compacting data raises graph

– Changing loop indexing changes step positions

