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Introduction - ROCCC

 Riverside Optimizing Compiler for 
Configurable Circuits

 Converts a subset of C to VHDL
• Language is C with restrictions

• No explicit parallel or hw statements required

• Can compile our code to software or hardware

 Designed not for entire programs, but just the 
computational kernels
• Loop nests

• Streams of data in and streams out



ROCCC Specifics

 Goals

• Maximize the parallelism and clock rate

• Minimize area and memory accesses

 Approach - Extensive Compiler Optimizations

• Loop level: fine grained parallelism

• Storage level: compiler configured storage for data 

reuse

• Circuit level: expression simplification, pipelining



Optimizations Supported

Loop Procedure Array
• Normalization

• Invariant code motion

• Peeling

• Unrolling

• Fusion

• Tiling (blocking)

• Strip mining

• Interchange

• Un-switching

• Skewing

• Induction variable 

substitution

• Forward substitution

• Code hoisting

• Code sinking

• Constant propagation

• Algebraic identities 

simplification

• Constant folding

• Copy propagation

• Dead code elimination

• Unreachable code 

elimination

• Scalar renaming

• Reduction parallelization

• Division/multiplication by 

constant approximation

• If conversion

• Scalar replacement

• Array RAW/WAW 

elimination

• Array renaming

• Constant array value  

propagation

• Feedback reference 

elimination



High Level Code Restrictions

 No low level knowledge required

 Mark the area going to hardware with empty 
function calls (begin_hw() and end_hw())

 Only perfectly nested loop nests are allowed

 Recursion and pointers are disallowed
• Only recurrence relations in 1-D or 2-D arrays are 

allowed

 No structs or unions

 Small syntactic restrictions



Memory Accesses Allowed

for (j = 1 ; j < N; ++j)

{

B[j] = A[j + 2] + A[j - 1] ;
}

A
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X XY YZ Z



Example ROCCC code

begin_hw();

for (k = 0 ; k < numAtoms * 3 ; k+=3)

{

t2 = p_i_x - inputArray[k + 0] ;

r2 = t2 * t2 + r2_delta ;

t2 = p_i_y - inputArray[k + 1] ;

r2 += t2 * t2 ;

t2 = p_i_z - inputArray[k + 2] ;

r2 += t2 * t2 ;

if (r2 <= cutoff2_delta)

outputArray[k] = 1 ;

else

outputArray[k] = 0 ;

}

end_hw() ;



Application On NAMD

 NAnoscale Molecular Dynamics
• One of the most popular molecular dynamics 

programs

• Optimized for supercomputing systems

 Researchers want millions of atoms at 
timescales of seconds
• Current processors allow for microsecond 

timescales

• Time step is in femtoseconds



Main loop

for each timestep
for every atom I in system

for each other atom J in system
compute the forces exerted by atom J on atom I
sum all the forces
compute its next position

•Of course, not all forces contribute much to the total force

•More complex calculations on the boundaries
•One loop body with 60 variants!



Critical Region Specifics – 60 

Ranges

Loop 1

Loop 2

Loop 3

// Find atoms in range 1
Loop 1:
{

// Both fast and slow calculations
}

// Find atoms in range 2
Loop 2:
{
slow_d = kqq ;
val =  diffa * slow_d ;

}

// Find atoms in range 3
Loop 3:
{
fast_d += vdw_d ;
val = diffa * fast_d ;

}



Most Critical Region

 All 60 loop instances count for 82% of total 
execution time

 One particular loop instance counted for 
~80% of all loop instance computations
• Total of >65.6% of all execution in one loop

• That loop contained 52 floating point operations
 29 additions/subtractions

 17 multiplications

 6 divisions 

• All by constants, automatically transformed by ROCCC



Original Non-conforming code

for(k=0; k<npairi; ++k)

{

const int j = pairlisti[k] ;

register const CompAtom* p_j = p_1 + j ;

const double* lj_pars = vdwtypearray[j] ;

const double A = scaling * lj_pars->A ;   

// Etc.

}



Code Transformations - Linearization

Pairlist

Atom List

Reordered List

BA C D E F G H I J

BD A I C E H G F J



Example of Linearization

Original Code

for(k=0; k<npairi; ++k)

{

const int j = pairlisti[k] ;

register const CompAtom* p_j = p_1 + j ;

const double* lj_pars = vdwtypearray[j] ;

const double A = scaling * lj_pars->A ;   

// Etc.

}

Modified Code

for(k=0; k< npairi; ++k)

{  // Done in Software
A[k] = vdwtypearray[pairlist[k]]->A;

}

for(k=0; k<npairi; ++k)

{  // Done in Hardware

// Use A[k] instead of A
}

for(k=0; k< npairi; ++k)

{  // Done in Software

// Store A[k] if necessary 
}



ROCCC Execution Model

Data memory (on or off chip)

Data store

Buffer

Data memory (on or off chip)

Data fetch

Buffer

….

Unrolled loop bodies
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 A simplified model

• Decoupled memory 

access from 

datapath

• Parallel loop 

iterations

• Pipelined datapath

• Data is pushed by 

the buffer into the 

datapath



Interface Mechanism

 Platform dependant
• Currently ported and supporting the SGI-RASC 

blade on the SGI Altix 4700 system

• Interface can be generated by ROCCC, but we 
are currently only supporting what we have

 Smart buffer reads/writes from the SRAMs 
located on the SGI-RASC blade
• RASCLib API is called from C code to pass data 

back and forth, start the algorithm, initialize 
registers



SGI RASC RC100 Blade

 Connected to the SGI Altix 4700

• Single system image

• 16 to 512 Intel Itanium 2 processors

• 2 Virtex 4 LX200 chips

 NUMALink architecture

• Supports 6.4 GB/s/FPGA



Results

 Compiled the most critical loop into hardware

• Compared iterations of the loop in software and 

hardware

• First step in an end-to-end approach

 Single precision implementation fit on LX200

 Double precision implementation 

overmapped

• We split double precision into three vectors (x, y, 

and z) and each individual vector fits on an FPGA



Memory Bandwidth Issues

 Memory is the bottleneck
• Single precision required 48 bytes per cycle

• Double precision vectors required 96 bytes per 
cycle

• SGI-RASC can feed Single precision once per 
cycle
 We need 5.856 GB/s for single precision

• Double precision needs two cycles to collect data, 
before datapath can begin



Results Of One Loop Iteration

Vertex 4LX200 1.6 GHz Itanium2

Speed Slices Vs. gcc Vs. icc

Single Precision 149 MHz 44% 5335x 808x

Double Precision X 168 MHz 63% 2635x 145x



Union of Ranges and a New 

Approach

 Not the ideal way to implement

 All ranges’ calculations combined into one 
hardware chunk
• Overmapped - >250 stages in the pipe

 Each range’s calculations combined with 
distance calculation
• Some in hw, some in sw possible

 Compiler approach allows us to change this 
rapidly and try other things



A New Approach

Incoming Data (j atoms)

Distance Calculation

If (within cutoff)

calculate forces

...
Distance Calculation

If (within cutoff)

calculate forces

Distance Calculation

If (within cutoff)

calculate forces

I II

Summation



Conclusions

 We have run ROCCC on a substantial 

benchmark (NAMD) and generated floating 

point and double precision hardware

 We have shown significant speedup of the 

most critical loop over software

 Compiler approach allows us to try different 

approaches and versions of the program



Thank you!



Problems

 Our code simulates correctly, but we 

are currently working with SGI to 

resolve some issues with the hardware 

on the actual system



Division Optimization

 The original NAMD code had 6 divisions, but they 
were all divisions by constants
• fast_d / 2 + fast_c /4 + fast_b / 6

 ROCCC detected these and replaced them with 
either a multiplication of the reciprocal or a subtract 
operation on the exponent.
• This was performed in hardware only

• Automatically detected - no low level knowledge necessary



Introduction

Spatial Computing

Data

Output

Compute

pipeline

Data

Output

 Image processing

Cryptography

Dynamic programming

Molecular dynamics

for (I = 0 ; I < N; ++I)

{

A[I] = B[I] * C[I] ;

}

Parallel executionData Driven



Introduction

Reconfigurable Computing

Sequential 
Code 

(C/C++) ? FPGA

 Software designers are used

to programming sequentially

 Few languages support 

spatial computing

 FPGAs provide flexible implementations of hardware

 Circuits on FPGAs coupled with microprocessors

 Allows for both hardware and software interacting


