
Compiled Code Acceleration Of NAMD On

FPGAs

Jason Villarreal, John Cortes, and Walid A. Najjar

Department of Computer Science and Engineering

University of California, Riverside

COMPUTER
SCIENCE &ENGINEERING

Common Approaches to Utilizing

Reconfigurable Platforms

System Code

SW HW

VHDLC + API

uP FPGA

ROCCC

C HLL

Introduction - ROCCC

 Riverside Optimizing Compiler for
Configurable Circuits

 Converts a subset of C to VHDL
• Language is C with restrictions

• No explicit parallel or hw statements required

• Can compile our code to software or hardware

 Designed not for entire programs, but just the
computational kernels
• Loop nests

• Streams of data in and streams out

ROCCC Specifics

 Goals

• Maximize the parallelism and clock rate

• Minimize area and memory accesses

 Approach - Extensive Compiler Optimizations

• Loop level: fine grained parallelism

• Storage level: compiler configured storage for data

reuse

• Circuit level: expression simplification, pipelining

Optimizations Supported

Loop Procedure Array
• Normalization

• Invariant code motion

• Peeling

• Unrolling

• Fusion

• Tiling (blocking)

• Strip mining

• Interchange

• Un-switching

• Skewing

• Induction variable

substitution

• Forward substitution

• Code hoisting

• Code sinking

• Constant propagation

• Algebraic identities

simplification

• Constant folding

• Copy propagation

• Dead code elimination

• Unreachable code

elimination

• Scalar renaming

• Reduction parallelization

• Division/multiplication by

constant approximation

• If conversion

• Scalar replacement

• Array RAW/WAW

elimination

• Array renaming

• Constant array value

propagation

• Feedback reference

elimination

High Level Code Restrictions

 No low level knowledge required

 Mark the area going to hardware with empty
function calls (begin_hw() and end_hw())

 Only perfectly nested loop nests are allowed

 Recursion and pointers are disallowed
• Only recurrence relations in 1-D or 2-D arrays are

allowed

 No structs or unions

 Small syntactic restrictions

Memory Accesses Allowed

for (j = 1 ; j < N; ++j)

{

B[j] = A[j + 2] + A[j - 1] ;
}

A

0 1 2 3 4 5 6 7 8 9

X XY YZ Z

Example ROCCC code

begin_hw();

for (k = 0 ; k < numAtoms * 3 ; k+=3)

{

t2 = p_i_x - inputArray[k + 0] ;

r2 = t2 * t2 + r2_delta ;

t2 = p_i_y - inputArray[k + 1] ;

r2 += t2 * t2 ;

t2 = p_i_z - inputArray[k + 2] ;

r2 += t2 * t2 ;

if (r2 <= cutoff2_delta)

outputArray[k] = 1 ;

else

outputArray[k] = 0 ;

}

end_hw() ;

Application On NAMD

 NAnoscale Molecular Dynamics
• One of the most popular molecular dynamics

programs

• Optimized for supercomputing systems

 Researchers want millions of atoms at
timescales of seconds
• Current processors allow for microsecond

timescales

• Time step is in femtoseconds

Main loop

for each timestep
for every atom I in system

for each other atom J in system
compute the forces exerted by atom J on atom I
sum all the forces
compute its next position

•Of course, not all forces contribute much to the total force

•More complex calculations on the boundaries
•One loop body with 60 variants!

Critical Region Specifics – 60

Ranges

Loop 1

Loop 2

Loop 3

// Find atoms in range 1
Loop 1:
{

// Both fast and slow calculations
}

// Find atoms in range 2
Loop 2:
{
slow_d = kqq ;
val = diffa * slow_d ;

}

// Find atoms in range 3
Loop 3:
{
fast_d += vdw_d ;
val = diffa * fast_d ;

}

Most Critical Region

 All 60 loop instances count for 82% of total
execution time

 One particular loop instance counted for
~80% of all loop instance computations
• Total of >65.6% of all execution in one loop

• That loop contained 52 floating point operations
 29 additions/subtractions

 17 multiplications

 6 divisions

• All by constants, automatically transformed by ROCCC

Original Non-conforming code

for(k=0; k<npairi; ++k)

{

const int j = pairlisti[k] ;

register const CompAtom* p_j = p_1 + j ;

const double* lj_pars = vdwtypearray[j] ;

const double A = scaling * lj_pars->A ;

// Etc.

}

Code Transformations - Linearization

Pairlist

Atom List

Reordered List

BA C D E F G H I J

BD A I C E H G F J

Example of Linearization

Original Code

for(k=0; k<npairi; ++k)

{

const int j = pairlisti[k] ;

register const CompAtom* p_j = p_1 + j ;

const double* lj_pars = vdwtypearray[j] ;

const double A = scaling * lj_pars->A ;

// Etc.

}

Modified Code

for(k=0; k< npairi; ++k)

{ // Done in Software
A[k] = vdwtypearray[pairlist[k]]->A;

}

for(k=0; k<npairi; ++k)

{ // Done in Hardware

// Use A[k] instead of A
}

for(k=0; k< npairi; ++k)

{ // Done in Software

// Store A[k] if necessary
}

ROCCC Execution Model

Data memory (on or off chip)

Data store

Buffer

Data memory (on or off chip)

Data fetch

Buffer

….

Unrolled loop bodies
P

ip
e
li
n

e
d

 d
a
ta

p
a
th

 A simplified model

• Decoupled memory

access from

datapath

• Parallel loop

iterations

• Pipelined datapath

• Data is pushed by

the buffer into the

datapath

Interface Mechanism

 Platform dependant
• Currently ported and supporting the SGI-RASC

blade on the SGI Altix 4700 system

• Interface can be generated by ROCCC, but we
are currently only supporting what we have

 Smart buffer reads/writes from the SRAMs
located on the SGI-RASC blade
• RASCLib API is called from C code to pass data

back and forth, start the algorithm, initialize
registers

SGI RASC RC100 Blade

 Connected to the SGI Altix 4700

• Single system image

• 16 to 512 Intel Itanium 2 processors

• 2 Virtex 4 LX200 chips

 NUMALink architecture

• Supports 6.4 GB/s/FPGA

Results

 Compiled the most critical loop into hardware

• Compared iterations of the loop in software and

hardware

• First step in an end-to-end approach

 Single precision implementation fit on LX200

 Double precision implementation

overmapped

• We split double precision into three vectors (x, y,

and z) and each individual vector fits on an FPGA

Memory Bandwidth Issues

 Memory is the bottleneck
• Single precision required 48 bytes per cycle

• Double precision vectors required 96 bytes per
cycle

• SGI-RASC can feed Single precision once per
cycle
 We need 5.856 GB/s for single precision

• Double precision needs two cycles to collect data,
before datapath can begin

Results Of One Loop Iteration

Vertex 4LX200 1.6 GHz Itanium2

Speed Slices Vs. gcc Vs. icc

Single Precision 149 MHz 44% 5335x 808x

Double Precision X 168 MHz 63% 2635x 145x

Union of Ranges and a New

Approach

 Not the ideal way to implement

 All ranges’ calculations combined into one
hardware chunk
• Overmapped - >250 stages in the pipe

 Each range’s calculations combined with
distance calculation
• Some in hw, some in sw possible

 Compiler approach allows us to change this
rapidly and try other things

A New Approach

Incoming Data (j atoms)

Distance Calculation

If (within cutoff)

calculate forces

...
Distance Calculation

If (within cutoff)

calculate forces

Distance Calculation

If (within cutoff)

calculate forces

I II

Summation

Conclusions

 We have run ROCCC on a substantial

benchmark (NAMD) and generated floating

point and double precision hardware

 We have shown significant speedup of the

most critical loop over software

 Compiler approach allows us to try different

approaches and versions of the program

Thank you!

Problems

 Our code simulates correctly, but we

are currently working with SGI to

resolve some issues with the hardware

on the actual system

Division Optimization

 The original NAMD code had 6 divisions, but they
were all divisions by constants
• fast_d / 2 + fast_c /4 + fast_b / 6

 ROCCC detected these and replaced them with
either a multiplication of the reciprocal or a subtract
operation on the exponent.
• This was performed in hardware only

• Automatically detected - no low level knowledge necessary

Introduction

Spatial Computing

Data

Output

Compute

pipeline

Data

Output

 Image processing

Cryptography

Dynamic programming

Molecular dynamics

for (I = 0 ; I < N; ++I)

{

A[I] = B[I] * C[I] ;

}

Parallel executionData Driven

Introduction

Reconfigurable Computing

Sequential
Code

(C/C++) ? FPGA

 Software designers are used

to programming sequentially

 Few languages support

spatial computing

 FPGAs provide flexible implementations of hardware

 Circuits on FPGAs coupled with microprocessors

 Allows for both hardware and software interacting

