
RSSI 2007
1

OpenFPGA CoreLib Core Library 

Interoperability Effort

M. Wirthlin1, D. Poznanovic2, P. Sundararajan3, A. Coppola4, D. 
Pellerin5, W. Najjar6, R. Bruce7, M. Babst8, O. Pritchard9, P. 

Palazzari10, G. Kuzmanov11

1Brigham Young University, 2SRC Computers, 3Xilinx Corporation, 4OptNgn Software, 
5Impulse, 6UC Riverside, 7Nallatech, 8DSPLogic, 9Altera Corporation, 10Ylichron, 11TU 

Delft



RSSI 2007
2

Overview

• Background and Motivation

• OpenFPGA CoreLib Project Goals

• Related Hardware Circuit Reuse Efforts

• XML & IP-XACT

• Example

• Status and Future Work



RSSI 2007
3

FPGA Design Methods

• Register Transfer Level

– VHDL, Verilog, etc.

• “Low-Level” Circuit Design

– Focus on implementation

– Time consuming

– High-quality circuits

• High Performance

– Meet timing constraints

– Meet resource constraints

– Utilized specialized resources

RTL

• High-Level Languages

– C, C++, Java, SystemC, etc.

– Graphical Programming

• “High-Level” Algorithm Design

– Focus on algorithm

– Implementation details ignored

– Possibly lower quality circuits

• High Productivity

– Easy to modify algorithm

– Fewer Implementation details

– Less design time

HLL



RSSI 2007
4

High Performance “Cores”

• High-performance circuit “cores” needed for high-
performance
– Perform performance critical functions (FFT, etc.)

– Hand crafted, efficient implementations

– Manage a complex resources (MGT, memories, etc.)

• Cores often described in “low-level” language
– VHDL, EDIF, raw bitstreams, etc.

– Provide high-performance, hand crafted circuit “functions”



RSSI 2007
5

High Performance “Cores”

• High-performance circuit “cores” needed for high-
performance
– Perform performance critical functions (FFT, etc.)

– Hand crafted, efficient implementations

– Manage a complex resources (MGT, memories, etc.)

• Cores often described in “low-level” language
– VHDL, EDIF, raw bitstreams, etc.

– Provide high-performance, hand crafted circuit “functions”

• Challenge: 
– How do we integrate high-performance cores into high-level 

languages?

– How do we reuse high-performance cores with more than one 
high-level language?



RSSI 2007
6

Project Goals

1. Develop a standard for circuit cores

2. Develop a standard for circuit libraries

3. Encourage the use of these standards

4. Create a synergistic environment

5. Create Libraries

Library Standard

Coregen JHDL Vendor1 OpenFPGA

…
Libraries

Tools
HLL (Matlab/Fortran) HLL (C/C++/SysC)



RSSI 2007
7

Hardware Reuse

• Reuse of hardware circuits is very important for hardware 
engineers
– Reduce design cost of large single chip systems

– Amortize cost of circuit cores over multiple chips

– Purchase high-quality circuits from “IP” specialists

• Hardware reuse is more difficult than software reuse
– Complex interfaces

• Signal timing, signal types, communication protocol

– Physical implications

• Circuit area, timing, power, placement, etc.

– Challenging verification

• How do you know it works?



RSSI 2007
8

opencores.org
– Open source repository of circuit cores

– Cores developed for wishbone bus interface

OPC-IP
– Specifies a common standard for core interface

– Proviles tools/infrastructure for integrating cores

SPIRIT Consortium
– Develops specs for describing circuits for re-use

– Created IP-XACT v1.2 spec (used in this work)

Virtual Socket Interface Alliance (VSI)
– Provide standards, docs, and methods for SoC design

– Facilitate circuit protection and transfer

Si2
– Facilitate interoperability of EDA tools

– Provides common libraries and interoperability tools

Hardware Reuse Efforts



RSSI 2007
9

Reuse with Existing HLL Tools

• Techniques used for importing external cores
– Function call interface

– New language semantics or PRAGMA statements

– Overloading standard operators

– New graphical library elements

– Custom instructions

• Example

double a,b;

b = sqrt(a);

entity dpfp_sqrt_64 is

clk, ce : in std_logic;

load : in std_logic;

a, out : std_logic_vector(63 downto 0)

end dpfp_sqrt_64;

architecture rtl of dpfp_sqrt_64 is

-- lots of cool design tricks

.

.

end rtl;

.c file

.vhdl file

.meta file

Describes

mapping

between

function and

RTL



RSSI 2007
10

Reuse with Existing HLL Tools

• Techniques used for importing external cores
– Function call interface

– New language semantics or PRAGMA statements

– Overloading standard operators

– New graphical library elements

– Custom instructions

• Commercial

– Impulse-C

– Dime-C

– Carte

– Reconfigurable Computing Toolbox

– C2H

• Research

– ROCCC

– Trident

– DWB

– CHiMPS



RSSI 2007
11

Reuse Challenges
• Each tool has a custom method for importing core

• Importing external core for new tool requires extra work

• Difficult to use same core in multiple tools

• Difficult to reuse libraries among tools

Lib 1

Lib 2

Lib 3

Tool 1

Tool 2

Tool 3



RSSI 2007
12

Reuse Goal
• Each core and library conforms to a standard

• Each tool recognizes this standard

• Easy to use same core in multiple tools

• Easy to reuse libraries among tools

Lib 1

Lib 2

Lib 3

Tool 1

Tool 2

Tool 3

Standard



RSSI 2007
13

IP Interface Standard Requirements

• Structural Information
– Signals (name, bit width, properties)

– Signal types (higher level type information)

• Timing Interface
– Signal arrival times

– Signal response times

• Control interface
– Interface protocol specification

– Handshaking requirements

• Parameterization

• Estimation interface

• External tool/generator interface



RSSI 2007
14

XML Circuit Meta Description

• Exploit XML infrastructure to describe cores and 
libraries
– Define custom XML schema for describing cores

– Create XML descriptions of reusable cores

• Define all details of complicated circuit interface

• Provide multiple views of core

– Package cores into reusable libraries

• Benefits
– Many tools available for manipulating/viewing XML

– Several HLL tools already use XML to describe cores

– Existing techniques for publishing cores with XML (IP-XACT)



RSSI 2007
15

IP-XACT

• XML meta description of reusable IP

– XML schema defining tags for specifying reusable IP

– Defines interface, configuration, and generation of IP

– Used primarily for defining bus-based IP in SoC design

– Current standard intended for RTL-level IP

• Created by the Spirit Consortium

– Non-profit organization with over 60 company members

– Led primarily by ARM and Mentor Graphics

– Being considered as an IEEE Standard (P1685)

• Compatible and complementary with other IP-reuse 

activities

– Opencores, OCP-IP, etc.



RSSI 2007
16

Example – UART on AMBA Bus

Raw XML



RSSI 2007
17

Example – UART on AMBA Bus

Eclipse IP-XACT Plug-In View

Several tools available for

manipulating and creating

IP-XACT meta descriptions



RSSI 2007
18

IP-XACT Extensions

• IP-XACT standard not sufficient for CoreLib effort
– Limited to bus-based cores and HDL data types

– Limited support for custom interfaces

– IP-XACT supports a variety of extensions for new functionality

• Develop extensions to IP-XACT for CoreLib
– Higher level data types (floating point, fixed point, etc.)

– Temporal interface (timing and protocol)

– Specifying behavior (arithmetic functions)

– Advanced memory architectures

IP-XACT

ESL Verification CoreLib…



RSSI 2007
19

Square Root Example

double a,b;

b = sqrt(a);

Vendor Library

b = my_fast_sqrt(a);

User Library

b = vendor_small_sqrt(a);
GPL Library



RSSI 2007
20

Square Root Example

x = [3.2; 1.0; 2; 5];

y = [1.1, -2.3, 4, .4);

a = det(x * y);

b = sqrt(a);

Vendor Library

b = my_sqrt(a);

b = vendor_sqrt(a);

User Library

GPL Library



RSSI 2007
21

Status

• Completed survey of previous work

• Gathered information about tools

• Proposed framework around IP-XACT

• Experimenting with IP-XACT

• Gathering freely available cores



RSSI 2007
22

Future Work

• Develop sample IP-XACT wrappers for cores

• Propose and demonstrate extensions

• Solicit feedback from vendors

• Encourage use of standards



RSSI 2007
23

CoreLib Wiki
https://isl.ncsa.uiuc.edu/twiki/bin/view/OpenFPGA/CoreLib

• Related Circuit 

Reuse Activities

• Tools and Compilers

• Examples

• HLL Compiler 

Requirements

• Interface Standards


