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Overview

• Background and Motivation

• OpenFPGA CoreLib Project Goals

• Related Hardware Circuit Reuse Efforts

• XML & IP-XACT

• Example

• Status and Future Work
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FPGA Design Methods

• Register Transfer Level

– VHDL, Verilog, etc.

• “Low-Level” Circuit Design

– Focus on implementation

– Time consuming

– High-quality circuits

• High Performance

– Meet timing constraints

– Meet resource constraints

– Utilized specialized resources

RTL

• High-Level Languages

– C, C++, Java, SystemC, etc.

– Graphical Programming

• “High-Level” Algorithm Design

– Focus on algorithm

– Implementation details ignored

– Possibly lower quality circuits

• High Productivity

– Easy to modify algorithm

– Fewer Implementation details

– Less design time

HLL
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High Performance “Cores”

• High-performance circuit “cores” needed for high-
performance
– Perform performance critical functions (FFT, etc.)

– Hand crafted, efficient implementations

– Manage a complex resources (MGT, memories, etc.)

• Cores often described in “low-level” language
– VHDL, EDIF, raw bitstreams, etc.

– Provide high-performance, hand crafted circuit “functions”
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High Performance “Cores”

• High-performance circuit “cores” needed for high-
performance
– Perform performance critical functions (FFT, etc.)

– Hand crafted, efficient implementations

– Manage a complex resources (MGT, memories, etc.)

• Cores often described in “low-level” language
– VHDL, EDIF, raw bitstreams, etc.

– Provide high-performance, hand crafted circuit “functions”

• Challenge: 
– How do we integrate high-performance cores into high-level 

languages?

– How do we reuse high-performance cores with more than one 
high-level language?
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Project Goals

1. Develop a standard for circuit cores

2. Develop a standard for circuit libraries

3. Encourage the use of these standards

4. Create a synergistic environment

5. Create Libraries

Library Standard

Coregen JHDL Vendor1 OpenFPGA

…
Libraries

Tools
HLL (Matlab/Fortran) HLL (C/C++/SysC)
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Hardware Reuse

• Reuse of hardware circuits is very important for hardware 
engineers
– Reduce design cost of large single chip systems

– Amortize cost of circuit cores over multiple chips

– Purchase high-quality circuits from “IP” specialists

• Hardware reuse is more difficult than software reuse
– Complex interfaces

• Signal timing, signal types, communication protocol

– Physical implications

• Circuit area, timing, power, placement, etc.

– Challenging verification

• How do you know it works?
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opencores.org
– Open source repository of circuit cores

– Cores developed for wishbone bus interface

OPC-IP
– Specifies a common standard for core interface

– Proviles tools/infrastructure for integrating cores

SPIRIT Consortium
– Develops specs for describing circuits for re-use

– Created IP-XACT v1.2 spec (used in this work)

Virtual Socket Interface Alliance (VSI)
– Provide standards, docs, and methods for SoC design

– Facilitate circuit protection and transfer

Si2
– Facilitate interoperability of EDA tools

– Provides common libraries and interoperability tools

Hardware Reuse Efforts



RSSI 2007
9

Reuse with Existing HLL Tools

• Techniques used for importing external cores
– Function call interface

– New language semantics or PRAGMA statements

– Overloading standard operators

– New graphical library elements

– Custom instructions

• Example

double a,b;

b = sqrt(a);

entity dpfp_sqrt_64 is

clk, ce : in std_logic;

load : in std_logic;

a, out : std_logic_vector(63 downto 0)

end dpfp_sqrt_64;

architecture rtl of dpfp_sqrt_64 is

-- lots of cool design tricks

.

.

end rtl;

.c file

.vhdl file

.meta file

Describes

mapping

between

function and

RTL
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Reuse with Existing HLL Tools

• Techniques used for importing external cores
– Function call interface

– New language semantics or PRAGMA statements

– Overloading standard operators

– New graphical library elements

– Custom instructions

• Commercial

– Impulse-C

– Dime-C

– Carte

– Reconfigurable Computing Toolbox

– C2H

• Research

– ROCCC

– Trident

– DWB

– CHiMPS



RSSI 2007
11

Reuse Challenges
• Each tool has a custom method for importing core

• Importing external core for new tool requires extra work

• Difficult to use same core in multiple tools

• Difficult to reuse libraries among tools

Lib 1

Lib 2

Lib 3

Tool 1

Tool 2

Tool 3
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Reuse Goal
• Each core and library conforms to a standard

• Each tool recognizes this standard

• Easy to use same core in multiple tools

• Easy to reuse libraries among tools

Lib 1

Lib 2

Lib 3

Tool 1

Tool 2

Tool 3

Standard
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IP Interface Standard Requirements

• Structural Information
– Signals (name, bit width, properties)

– Signal types (higher level type information)

• Timing Interface
– Signal arrival times

– Signal response times

• Control interface
– Interface protocol specification

– Handshaking requirements

• Parameterization

• Estimation interface

• External tool/generator interface
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XML Circuit Meta Description

• Exploit XML infrastructure to describe cores and 
libraries
– Define custom XML schema for describing cores

– Create XML descriptions of reusable cores

• Define all details of complicated circuit interface

• Provide multiple views of core

– Package cores into reusable libraries

• Benefits
– Many tools available for manipulating/viewing XML

– Several HLL tools already use XML to describe cores

– Existing techniques for publishing cores with XML (IP-XACT)
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IP-XACT

• XML meta description of reusable IP

– XML schema defining tags for specifying reusable IP

– Defines interface, configuration, and generation of IP

– Used primarily for defining bus-based IP in SoC design

– Current standard intended for RTL-level IP

• Created by the Spirit Consortium

– Non-profit organization with over 60 company members

– Led primarily by ARM and Mentor Graphics

– Being considered as an IEEE Standard (P1685)

• Compatible and complementary with other IP-reuse 

activities

– Opencores, OCP-IP, etc.
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Example – UART on AMBA Bus

Raw XML
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Example – UART on AMBA Bus

Eclipse IP-XACT Plug-In View

Several tools available for

manipulating and creating

IP-XACT meta descriptions
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IP-XACT Extensions

• IP-XACT standard not sufficient for CoreLib effort
– Limited to bus-based cores and HDL data types

– Limited support for custom interfaces

– IP-XACT supports a variety of extensions for new functionality

• Develop extensions to IP-XACT for CoreLib
– Higher level data types (floating point, fixed point, etc.)

– Temporal interface (timing and protocol)

– Specifying behavior (arithmetic functions)

– Advanced memory architectures

IP-XACT

ESL Verification CoreLib…
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Square Root Example

double a,b;

b = sqrt(a);

Vendor Library

b = my_fast_sqrt(a);

User Library

b = vendor_small_sqrt(a);
GPL Library
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Square Root Example

x = [3.2; 1.0; 2; 5];

y = [1.1, -2.3, 4, .4);

a = det(x * y);

b = sqrt(a);

Vendor Library

b = my_sqrt(a);

b = vendor_sqrt(a);

User Library

GPL Library



RSSI 2007
21

Status

• Completed survey of previous work

• Gathered information about tools

• Proposed framework around IP-XACT

• Experimenting with IP-XACT

• Gathering freely available cores
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Future Work

• Develop sample IP-XACT wrappers for cores

• Propose and demonstrate extensions

• Solicit feedback from vendors

• Encourage use of standards
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CoreLib Wiki
https://isl.ncsa.uiuc.edu/twiki/bin/view/OpenFPGA/CoreLib

• Related Circuit 

Reuse Activities

• Tools and Compilers

• Examples

• HLL Compiler 

Requirements

• Interface Standards


