
Heterogeneous Processing Systems

Heterogeneous Multiset of Homogeneous Arrays
(Multi-multi-core)



2

Processing Heterogeneity

CPU (x86, SPARC, PowerPC)

GPU (AMD/ATI, NVIDIA)

DSP (TI, ADI)

Vector processors (Cray)

Systolic arrays (regaining interest)

String processors (XML engines)

DMA engines

Simple scalar processors (ARM, ARC)

Pattern matchers (CAM/CAS/anti-virus/mal-ware)

Fixed function devices (LAN acceleration, streaming video display)

FPGA supported functionalities



3

Memory Interface Heterogeneity

Multiple types of memory interface:

SRAM.

DRAM.

Content addressable memory.

Transactional.

Stable atomic.

Active (in-memory operations supported).

Multiple concurrent coherency models:

Fully coherent.

Semi-coherent.

Non-coherent.

Multiple coherency domains.

FPGA supported/created functionalities.



4

Homogeneity

Zero or more instances of each processor and/or 
memory type may be present in a given system.

A given solution (application) may desire:

Many different types of processing and/or memory 
elements.

Many instances of the same type of processing and/or 
memory element.

Multiple instances of multiple types of processing 
and/or memory elements.



5

Different Type of
Reconfigurable Computing

HPC has history of building systems to run specific types of 
applications.

Multi-multi-core creates opportunity to tune virtual server 
configurations to application requirements.

Applications written to maximize performance via adoption of 
assumption of multi-multi-core

Servers constructed on application specific basis.

Fast virtual servers get dedicated/shared hardware resources.

Slow virtual servers emulate multi-multi-core on reduced resource 
systems.

Dynamic core/hardware assignment.

System image has stubs that are linked to real hardware when 
needed.

System image has access to load balanced work queues.



6

Sun (SPARC guys) and Symbolics (Lisp guys)

How far can the pendulum swing away from:

Standard hardware architectures?

Standard software architectures?

Dedicated hardware is faster than general purpose hardware?

Historic deltas between full-custom, AISCs, and FPGAs is diminishing?

Latency?

Bandwidth?

Density?

Power consumption?

Multi-core will become multi-multi-core?

Software implications

– System initialization

– Operating System

– Tool support

– Language integration

– Programming model

Overlapping core functionality

– ADI and TI in same system?

– X86 and PowerPC in the same system?

Will cost of hardware/software infrastructure force coalescence around a richer, but still very 
limited number of core types and implementations?



7

Real Challenge

Specification of generalized communication/messaging model between subsystems.

Specification of para-virtual system level shared memory model for hardware components:

Physical.

Guest physical.

Guest virtual.

Alternatives to current interrupt “sledge-hammer”

Improved hardware interrupt models for sequestered cores?

New OS interrupt models?

Multi-threaded polling architectures?

Can computer science reverse its direction as a pure software science?

Will computer engineers be the future of “hard-core” system level programming?

What is the desired future software level interface:

MPI?

Sockets?

CORBA?

?



8

Processing Models

Directed processing

One processing subsystem is tightly controlled by another 
processing subsystem.

Example: graphics.

Proxied processing

Processing subsystem is tied to remote program behavior, 
but highly autonomous in operation.

Example: full TCP/IP stack offload.

Peer processing

Processors interact, but each subsystem operates 
independently of the other.

Example: front-end web, back-end data-base processing



9

Inter-Processor Communication

Generally, a processor’s I/O is limited to read and write operations.

Actions must be address and/or data oriented.

Concepts apply equally to homo and heterogeneous communication.

None of these concepts are mutually-exclusive

Control

Stream of execution

Pre-emptive (interrupt)

Co-operative

Metadata

Register

Message queue

Cache-line messaging

Data

System memory

Special purpose memory

Register

Cache



10

Start-up Requirements

Initialization

Booting all the pieces

Usurpation of authority (emperor crowns itself)

– Hypervisor/VM/VMM initialized.

– Order imposed.

Discovery

Fixed logic

Reconfigurable logic

– Fixed set of dynamically assignable profiles.

– Functionally dynamic, assignable hardware resource.

System does not understand functionality beyond ability to assign resource to virtual server.

Allocation

Creation of virtual servers within physical server.

Hard partitioning of non-shareable resources.

Protection of shareable resources.



11

Interconnect Model
Intra-Subsystem / Inter-Subsystem / Subsystem to Memory

Homogeneous interconnect

Heterogeneous interconnect

Create distinction between homogeneous and heterogeneous?

GPU/GPU conundrum.

Shared memory

Partitioned memory

Shared and partitioned memory

Coherency 

Cache effects

Virtualization

Paging

Hypervisor/VM



12

I/O Model

What is I/O in multi-multi-core environment?

Shared I/O.

Intelligent / off-load models.

– I/O becomes fixed function sub-system.

IOV (I/O virtualization).

– Partitioned multi-function devices.

Dedicated I/O.

IOV (I/O virtualization).

– Partitioned multi-function devices.

Ethernet hegemony.

I/O == Ethernet.

How far into the box does Ethernet extend?

Ethernet as new graphics interface.

iSCSI as EIDE/SATA/SAS/SCSI/FibreChannel replacement.

Impact of intelligent chameleon like logical interfaces to physical Ethernet based 
tunneling interfaces.



13

Programming Model

Compiler based multi-multi-core.

Homogeneous.

Heterogeneous.

Explicit.

Implicit.

Library based multi-multi-core.

Previous problems relatively easy compared to this one.

Can multi-multi-core programming model ever become practically 
useful?

Restricted set of functionalities folded into standard system 
software components (libraries, compilers, assemblers, linkers, run-
time systems).

Pray for painless death if your problem is outside addressed multi-
multi-core integration solutions.



14

AMD is interested in addressing the issues associated 
with multi-multi-core computing.

AMD has no interest in operating in a vacuum as it 
addresses these problems.

AMD is soliciting your input.

Should not be confused with an invitation to fund your 
research.

– Dr. David Mayhew

– d.mayhew@charter.net


