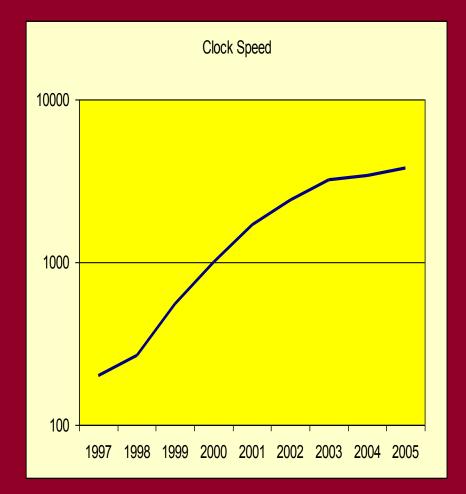
FPGA HPC – The road beyond processors

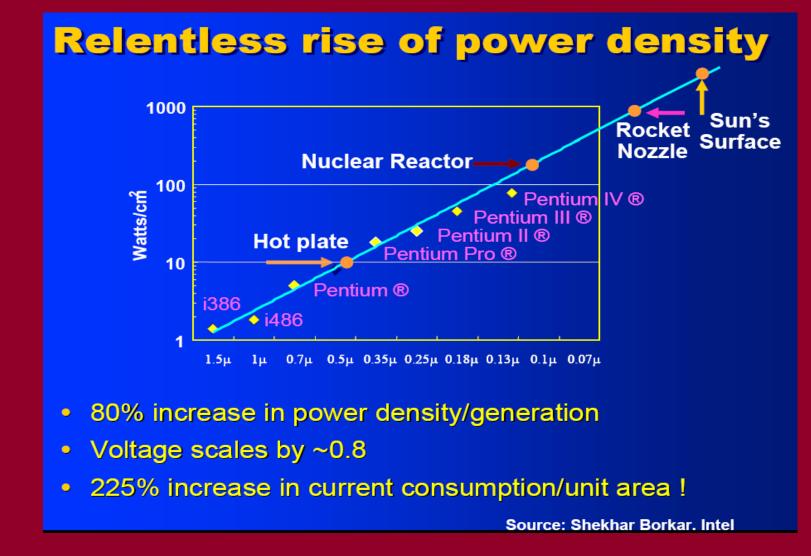
Jeff Mason Xilinx Research Labs mason@xilinx.com

Slide 1 of 21



Outline

- FPGA High Performance Computing (FHPC)
- Xilinx FPGAs
- What can be done today
- Why not more (Double Precision FP)
- The first stepping stone, ease of use
- Future stones, ESL
- Partial Reconfiguration
- Platforms of tomorrow


Pentium Clock Speed Over Time

- 3 GHz introduced in 2002
- Fastest processor today is 3.8GHz
- No increased frequency at 90nm
- Moore's law no longer improving clock speed

XILINX°

7/18/2007

<u>National Security Agency</u> - The power consumption of today's advanced computing systems is rapidly becoming <u>the</u> limiting factor with respect to improved/increased computational ability."

Slide 4 of 21

Xilinx Virtex5 for HPC

- 6 input LUTs
- 550 MHz DSP48E with 25x18 multipliers for better single precision floating point and DSP acceleration.
- 11.6 Mbits of flexible embedded Block RAM
- 100Mbps–3.2 Gbps transceivers for fast chip-tochip communication

Choices

	Intel Woodcrest	Xilinx V5LX330		
GOPS	• 24G 64-bit Op/s	• 2.59T 64bit Op/s		
FLOPS	• 48 GFlop/s for 2 chip system	• 60 GFlop/s		
BW external memory	 CPU into MCH 2x 10.6 Gbyte/s Bensley MCH 38.4 GByte/s for 6channels 	•Select IO 56 GByte/s		
BW internal memory	 L1 Cache BW 16 Gbyte/s Register File BW 384 Gbyte/s 	• BRAM BW 1.8 TByte/s • FF BW 10.4 TByte/s		
Power	• 80W-130W	•15W		

Microprocessor: •All functions are hardened in silicon and you pay for them whether you use them or not •Can't use that silicon for something else •Small number of parallel operations; often idle

FPGA:

Most of logic is configurable
Processing power doesn't go to waste – the same silicon can be used for many different functions
Different operations map to different silicon allows massive pipelining; lots of parallelism

FPGA Acceleration Examples – today!

Applications	HW (FPGA)	SW Only	
Hough & inverse Hough processing	2 seconds of processing time @20Mhz <u>370x faster</u>	12 minutes processing time Pentium 4 - 3Ghz	
AES 1MB data processing/cryptography rate Encryption Decryption	424 ms/19.7 MB/s 424 ms/19.7 MB/s <u>13x faster</u>	5,558 ms / 1.51 MB/s 5,562 ms / 1.51 MB/s	
Smith-Waterman ssearch34 from FASTA	100 sec FPGA processing 64x faster	6461 sec processing time Opteron	
Multi-dimensional hypercube search	1.06 Sec FPGA@140Mhz Virtex II <u>113x faster</u>	119.5 Sec Opteron - 2.2 Ghz	
Monte-Carlo Analysis 64,000 paths	10 sec of Processing @200 Mhz FPGA system <u>10x faster</u>	100 sec processing time Opteron - 2.4 Ghz	
BJM Financial Analysis 5 million paths	242 sec of Processing @61 Mhz FPGA system <u>26x faster</u>	6300 sec processing time Pentium 4 – 1.5 Ghz	
Black-Scholes	18 msec FPGA@110Mhz Virtex-4 203x faster	3.7 Sec 1M iterations Opteron - 2.2 Ghz	

• Celoxica provided data

Slide 7 of 21

XILINX°

7/18/2007

Why isn't FHPC everywhere?

- No one has yet solved the programming model problem to the HPC programmers satisfaction
 - HPC programmers will NOT program in HDL or other hardware-centric languages
 - More than a tool issue HDL requires a different way of thinking about how to design
 - Not interested in how to program but rather in the results of programming
 - Predefined libraries don't solve the problem
 - Limits opportunity to places where the supplier has enough application expertise to develop IP
 - Customers want to add their own "secret sauce" to the IP

7/18/2007

XILINX[®]

More reasons why isn't FHPC everywhere?

- The hardware is not standard
 - Each new FHPC based system requires recompilation for memory access, processor access and more
- FPGAs are viewed as co-processors
 - Every system requires an INTEL/AMD processor or it is not considered.
 - One processor for 100s (1000s) of FPGAs is not even on the radar screen
- The complete solution does not exist
 - Software/Hardware partitioning is still an art, not a single button click of science
- FHPC is similar to eating Brussels sprouts it is good for you but it has always been less than enjoyable to chock it down in the past

Double Precision Floating point

- When will Xilinx release hard DPFP blocks:
 - Probably never. One user's IP is another's wasted silicon.
 - No customer will ever be happy with mix of hard IP on a given device, it is always a compromise for all customers
- When will Xilinx release a chip more suited to HPC with large amounts of DSP blocks:
 - As soon as we can make a business argument that it will sell.
 - If you have \$2M extra dollars for this endeavor, see me after the talk.
- Xilinx makes programmable logic, not hardened IP
- How fast/big is the current DP Floating point really?

FPGA Double Precision resources

	Opteron dual-core 2.8 GHz 95 watts	Opteron quad-core 2.3 GHz 95 watts	Virtex4 LX200 185 MHz 26 watts	Virtex5 LX330 237 MHz 26 watts	Virtex5 Theoretical chip 356 MHz 26 watts ^D
mult/add	11.2	36.8	15.9 ^A	28.0 ^B	59.1 ^C
all mult	5.6	18.4	12.0	20.8	56.5
all add	5.6	18.4	23.9	55.3	45.5

A) 43 full mults plus 43 adds @ 185 MHz

6 x 16 = 96 DSP

- (6 x 387) + (37 x 1229) + (43 x 637) = 75,186 < 75,588
- B) 61 full mults plus 61 adds @ 237 MHz
 - 19 x 10 = 190 DSPe < 192
 - $(19 \times 131) + (42 \times 615) + (61 \times 265) = 44,484 < 45,090$

•courtesy of Dave Strenski, Cray Research

- C) 69 max mults plus 69 full adds @ 356 MHz (69 x 10) + (69 x 3) = 897 DPSe < 960
 - $(69 \times 131) + (69 \times 244) = 25,875 < 25,890$
- D) This does not YET exist talk to me to help make it happen !

Xilinx

First step to FHPC

- Make it easy to get hardware into users hands
- Make it easy for the users to use this hardware and get 'enough of a performance' increase to be useful
- Provide a decrease in power consumption
- Do not try to be the fastest thing around when being as fast with less power is sufficient
- Do something now, not in 5 years

Ease of use

- HPC programmer must be able to access FHPC as easily as porting to new processor
 - FPHC tools must place ease of use as paramount to performance. A 2 times speed up with no effort is MUCH more appealing than a 20 times speed up with work
- Compiling High Level languages into Massively Parallel Systems – CHiMPS
 - Xilinx research project to do just this
 - It works now!

Future steps are much easier

- Much greater performance gains are available with other Xilinx or vendor tools at the expense of code rewrite
- Much easier to expand number of nodes in a cluster if user already has a cluster than it is to buy a new cluster
- Xilinx Electronic Systems Level (ESL) partners already provide many of these tools that get significant performance increases

Partial Reconfiguration

- Not just a research idea looking for a solution
- Required to keep a single chip 'active' talking to buses/memories while a new program is loaded into it.
- Alternative is to use separate chip to talk to bus/memory at cost of memory latency
- Only Xilinx currently provides this functionality!

7/18/2007

Limitations of current platforms

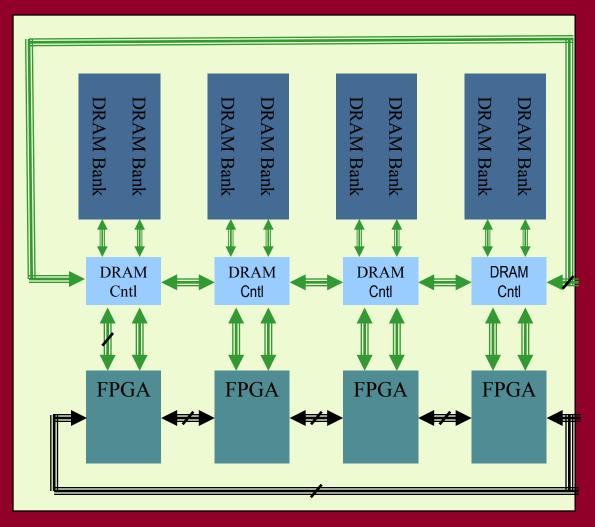
- Currently no standardized FPHC platform
- FPGAs are second class citizens relegated to the whims of a processor
- Typically many-to-one ratio of processors to FPGA
- Memory accesses by FPGA are slow (or non-existent) compared to accesses by processors
- Memory coherency between FPGA and processor is missing though it exists between multi-core processors

Today's platforms for FHPC

 Some connect to system with PCI/USB bus

 Co-processor models replace unused processor and connect to main processor with Hyperlink or FSB

Some are their own standalone system



Platform of tomorrow

- Standardized so it can be targeted by many vendors
- Memory access consistency between processors and FPGAs, including coherency
- FPGAs are not co-processors!
 - Many to one ratio of FPGAs to processors
 - Node might have 1 processor and many FPGAs or even no processor and many FPGAs
- HPC tools of today work seamlessly (MPI)
- New HPC tools that take advantage of multi-FPGA systems without overhead necessary in processor world can now be developed

7/18/2007

Tomorrows platform for FHPC

Slide 19 of 21

Non processor computation

- Imagine the following
 - 1. Blade in a cluster that has only FPGAs. CPU blades also exist and are used for things that CPUs are good at (file IO, internet, ...)
 - 2. All blades in a cluster have only FPGAs. If processor functionality is needed, then embedded soft processor is configured and used in FPGA
 - 3. Super-computer with thousands of FPGAs for each processor

Thank you

- The concept is interesting and well-formed, but in order to earn better than a "C," the idea must be feasible.
 - A Yale University management professor in response to Fred Smith's paper proposing reliable overnight delivery service. Fred Smith later started FedEx. 1965.

7/18/2007