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Abstract 

 
This paper describes the implementation and the 

performance analysis of a hardware accelerator for 

the BLAS library matrix multiplication operation. This 

accelerator is based on a dual-FPGA board and on an 

implementation BLAS software library making use of 

the FPGA-based hardware. In order to evaluate the 

performance of such a system, we implemented the 

matrix multiplication operation (BLAS “dgemm” 

function) using an optimized matrix multiplication 

FPGA design and we implemented the software 

“dgemm()” function to make use of the FPGA-based 

board in a completely transparent way for the user. In 

contrast with others works [2,5,6,10], the measured 

performance is based on the global runtime of the 

FPGA-accelerated “dgemm” function at software 

level, taking into account the data transfers between 

the host computer and the FPGA board, and the 

software pre- and post-processing. We show that using 

the developed FPGA-based BLAS accelerator it is 

possible to achieve 60% higher performance than a 

fully software implementation running on a high-end 

computer. Through a detailed analysis, this paper also 

shows that the most limiting factors are data transfers 

between the host computer memory and the FPGA 

board memory, and the data transfers between this 

memory and the FPGA itself. 

 

1. Introduction 

 
Over the last few years, the quality and the precision 

of models produced by virtual prototyping and 

numerical simulation software increased significantly. 

Keeping up with such high standards of quality and 

precision requires significant and constant increase of 

computation power. The current solution consists in 

using machines with more and more processors. 

Unfortunately, this solution is suboptimal and very 

expensive. 

Next to classic processors, the computation power 

of another sort of device is growing every day: That of 

programmable logic components like FPGA. One of 

their advantages compared to the classic processors is 

their capacity to perform a large number of operations 

in parallel. Several supercomputers manufacturers are 

interested in the use of the performance obtained with 

FPGA to accelerate the execution of software [12]. 

The prototyping and numerical simulation software 

massively use algebraic methods of system resolution. 

Most of these methods are based on operations such as 

matrix multiplication, matrix factorisation, etc. 

According to their importance these operations are 

grouped together in libraries. Among the most used, 

we find the BLAS library (Basic Linear Algebraic 

Subprograms). Most of the BLAS operations requires 

a lot of computing power, so it could be useful to 

decentralise their computation on a specialised board 

to accelerate their execution. 

This paper studies the conception of a FPGA based 

Hardware accelerator for the BLAS library and 

analyses the constraints impacting the global 

performances of the system. The purpose of this 

accelerator is to decentralize and to speed up the 

execution of the BLAS library. 

This article is organized as follows: Section 2 

presents the theoretical basis; Section 3 describes the 

preliminary evaluation of theoretical performance; 

Section 4 describes the implemented algorithms and 

the hardware used to build the prototype; Section 5 

introduces the measured results; Section 6 presents a 

detailed performance analysis; based on this analysis, 

section 7 introduces the requirements of an adapted 

FPGA board and section 8 draws the conclusions of 

the work. 



2. Background 
 

This section presents the theoretical base for the 

implementation of a BLAS operation and introduces 

the architecture of the implemented system. 

 
2.1 The BLAS Library  

 
Algebraic operations such as matrix multiplication 

or factorisation are key operations in numerous 

software algorithms of systems resolution. For this 

reason, these operations are often grouped together in 

standardised libraries. One of the most used library is 

the BLAS library (Basic Linear Algebraic 

Subprogram) [11]. It defines a standard interface and a 

standard implementation for basic vector and matrix 

operations. They are grouped in 3 levels following the 

type of the operands: level 1 for operands of type 

vector-vector, level 2 for operands of type vector-

matrix and level 3 for operands of type matrix-matrix. 

These operations can be reimplemented by the 

developers to optimize performance. 

 

2.2 Preliminary System Description 

 
The main purpose of the FPGA Hardware 

accelerator is to speed up BLAS library operations. Its 

main requirements are: 

• The use of the FPGA hardware accelerator has to 

be transparent for the user 

• It has to install easily in a common computer to 

increase its computing performance while using 

BLAS library operations. The board will be then 

composed of a standard communication interface 

(PCI/PCI-X/PCIe). 

 

The architecture of the hardware is composed of a 

host computer running the BLAS based application 
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Figure 1 : General System Architecture 

 

and a FPGA board plugged in the mainboard of the 

computer. 

As shown at Figure 1 the global system is composed 

of 5 main components: 

1. The CPU of the host computer, which performs 

the software data processing of the BLAS library 

and manages the data transfers between the 

Central Memory and the FPGA board 

2. The Central Memory, which contains the global 

data operands to be transferred to the FPGA board 

3. The FPGA board communication interface 

(PCI/PCI-X/PCIe): This interface has an 

important impact on the global performances of 

the Hardware accelerator.  

4. The FPGA, which performs the calculations and 

controls the RAM memory of the FPGA board. 

5. The local RAM memory of the board, which 

contains the operands of the operations. 

 

An advantage of the FPGA for High Performance 

Computing applications is their ability to perform a 

huge number of operations in parallel. Taking this 

specificity into account, the structure of the FPGA 

design will be composed of many Processing Elements 

(PE) running in parallel and of a module managing 

computations and data transfers (see Figure 1). 

 

3. Theoretical Analysis 

 
3.1 Performance 
 

Based on the FPGA design architecture (see Figure 

1), the FPGA theoretical raw computation 

performance (FTRCP) can be evaluated using the 

following expression [2]: 

 

FTRCP = Op x PE x Fmax   [Gflops/s]                (1) 

 

Where: 

• Op = The number of floating point operations 

performed by each Processing Element per clock 

cycle 

• PE = The number of Processing elements in the 

FPGA design 

• Fmax = The maximal frequency of the FPGA 

design  

 

It clearly appears that the raw computation 

performance strongly depends on the number of PE in 

the FPGA and thus on the number of operations 

performed in parallel. The FPGA features impacting 

the number of PE are their spatial density (number of 

Logical Elements) and their available resources 

(embedded multipliers, internal SRAM, etc). The 



number of PE can be increased by selecting a FPGA 

containing more logical elements. 

The maximal frequency mainly depends on 

complexity and optimisation of the FPGA design. It is 

difficult to increase this value significantly.  

This expression (1) doesn’t take into account the 

data transfer performance. The impact of data transfer 

on global performance is discussed in sections 3.2 and 

6.1. 

 

3.2 Preliminary Limitation Analysis 

 
As described in section 2.2, the global system is 

composed of 5 main components. To analyse the 

performance limitations we consider that the FPGA 

has an important power of raw computation and isn’t 

limiting the global performance of the system. In such 

circumstances the high computation performance of 

the FPGA are mainly limited by external factors. 

There are two main factors that can reduce the 

performances: 

1. The software processes running on the host 

computer and limiting the availability of 

computation data for the FPGA board 

2. The data transfers 

 

Data transfers between the host computer and the 

FPGA board 

 

Actual FPGA boards are equipped with SDRAM 

DDR or SDRAM DDR2 memory. This type of 

memory isn’t “Dual Port”: it is not possible to perform 

write and read operations at the same time. During the 

computation phase, the FPGA reads continuously its 

operands in the RAM memory of the board. As it isn’t 

possible to write data in this FPGA board RAM 

memory during this phase without an important loss of 

performances, the host computer has to wait for the 

end of the FPGA computations to download the results 

from the board memory to the central memory of the 

system and to upload new data for the next 

computation. During these transfer phases, the FPGA 

isn’t able to perform any computation which 

significantly reduces the global performance. 

Consequently, global performance will closely 

depend on the maximum bandwidth of this 

communication interface. The most widespread board 

interfaces and their maximal bandwidth are presented 

in Figure 2. We can see that currently, the PCI Express 

8x bus has the largest bandwidth. 

 

 

 

 

 

 

Figure 2 : Communication Interfaces 

 

Data transfers between the board memory and the 

FPGA 

 

In order to run at full speed, the FPGA needs to 

access as fast as possible the operands contained on 

the board memory. The performance of memory 

accesses is linked to the performance of the memory 

controller implemented in FPGA logic. As the 

maximal running frequency (Fmax) of the FPGA 

design is limited due to its complexity, this will impact 

the performance of the memory controller. Ideally, if 

the FPGA design and thus the memory controller ran 

at 200 Mhz, the FPGA would receive new valid data 

from the board memory at every clock cycle at 200 

Mhz. As the SDRAM memories have a yield of 

around 75%, the FPGA design only receives new valid 

data every clock cycle at approximately 150 Mhz. So 

to avoid breaks in the data stream, the FPGA design 

will run at a maximal speed of 150 Mhz. This will 

reduce the raw computation performance of the FPGA 

and thus the global performance of the system. 

 

Global Performance Maximisation  
 

To maximize the performance we have to:  

• Use a FPGA board with the fastest interface. E.g. 

PCI Express 8x 

• Optimise the FPGA design to maximise the 

running frequency of the FPGA 

• On the algorithmic side: Minimize the amount of 

data accesses and maximize the number of 

operations performed on one transferred data. 

By analogy to the theory introduced in [9], we 

define the factor Va representing the number of 

operations that can be performed for every Word 

transferred from the board memory to the FPGA. 

 

Va = O / Ma 

Where:  

• O = the total number of performed operations 

• Ma = the total number of memory accesses 
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3.3 BLAS Operation Selection 

 
According to the previous section analysis, the most 

interesting operation to study maximise the factor Va. 

As described in section 2.1 the BLAS library is 

composed of 3 levels according to operand type. 

• BLAS level 1: scalar multiplication of 2 vectors 

of size n:  

O = 2 x n, Ma = 2 x n � Va = 1  

• BLAS level 2: vector-matrix multiplication:  

O = 2 x n2, Ma = n x (n+1) � Va = (2xn)/(n+1)  

• BLAS level 3: matrix multiplication of square    

matrixes of size nxn:  

O = 2 x n3, Ma = 2 x n2 � Va = n 

 

As shown in these three examples the BLAS 

operations with the highest factor Va is a level 3 

operation. The matrix multiplication is an interesting 

operation to implement in the prototype due to its 

parallelisation capabilities and its importance in many 

system resolution algorithms. The operations based on 

64-bit floating point operands require a lot of 

processing power. We thus implement the 64-bit 

floating point matrix multiplication operation in the 

FPGA based hardware accelerator prototype. This 

operation corresponds to the BLAS operation: 

“dgemm()”.      

 

4. FPGA based Hardware Accelerator 

Prototype 
 

This chapter describes the implementation of the 

FPGA based BLAS “dgemm()” accelerator. 

 
4.1 FPGA Design Description 
 

This section describes the FPGA design 

implementing Matrix multiplication operation and 

optimisations applied to maximise its performance.  

Consider 3 matrixes A, B and C of sizes 

respectively MxN, NxK and MxK. Matrix C is the 

result of the matrix product of A and B. The elements 

of C are calculated as follows: 

 

 

 

 

 

With i = 1,…,M    and    j = 1,…,K 

 

We notice that the matrix multiplication is 

exclusively composed of sums of products (“Multiply 

and Accumulate” operations (MAC)). The processing 

core of each PE is thus a MAC unit. According to the 

number of PE and the size of matrix A and B each PE 

computes (MxK) \ PE elements of C. The total number 

of performed operations is: 2 x N x M x K. 

Following the analysis presented in [2], two main 

algorithmic optimisations have been applied to the 

basic matrix multiplication algorithm to take 

advantage of the FPGA features: 

 

1. Block product: This optimization is important for 

the implementation of matrix multiplication 

operation on FPGA in order to reduce the FPGA 

on-chip memory requirement. The matrix C is 

divided into a certain number of blocks of size 

(SixSj). Each of these blocks is the result of the 

matrix product of a block (SixN) of A and of a 

block (NxSj) of B. The computation of the 

various blocks of C are independent some of the 

others.  

2. Re-use of elements of matrix A: If we analyze the 

classic algorithm of the matrix multiplication, we 

notice that every element of the matrix A is 

reused K time. For every element of A 

transferred, we can execute K calculation using K 

elements of B. Considering this feature, by storing 

in FPGA internal memory a small number of 

elements of matrix A we can perform a large 

number of operations. We reduce significantly the 

requirements of bandwidth between the RAM 

memory on the FPGA board and the FPGA itself.  

 
On the FPGA design architecture side, the 

organisation of the PE in the FPGA plays an important 

role in the performance of the matrix multiplier. 

Indeed, every clock cycle, every PE performs a 

multiplication followed by an addition in 64 bits 

floating point. Every clock cycle, each PE thus 

requires two 64-bits data operands. If all the PE of 

Figure 1 were connected in parallel to module « 

Master » and if the FPGA contained, for example, 16 

PE, every clock cycle, 32 words of 64-bits would be 

downloaded from the SDRAM. At 200 Mhz it 

represents a need in bandwidth of more than 50 

Gbytes/s which cannot be reached with current 

SDRAM memories.  

An approach to tackle this problem, presented in [2], 

is a pipelined structure for the PE (see Figure 1). 

Except for the first PE which is directly connected to 

the "master", every PE is connected only to the 

previous PE and to the next PE in the pipeline. All the 

elements of matrixes A and B are thus going to 

circulate through every PE of the design. Each PE 

selects the elements they have to store according to the 

values of the matrix C they have to calculate and 

according to its position in the pipeline. Every clock 

∑
=

⋅=

N

k
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cycle, the module « master » receives and transmits 

one element of A and one element of B to the first PE. 

These elements are then going to progress from PE to 

PE every clock cycle. The required bandwidth is now 

of 2 x 64-bits x 200 Mhz = 3,2 Gbytes/s what can be 

reached with two 64 bits SDRAM DDRII 333Mhz 

memories for example. 

We implemented the MAC units using the 

optimised algorithms presented in [2,7,8] and making 

an intensive use of architectural features of modern 

FPGA like fast embedded multipliers and shift 

registers [7,8]. 

 

4.2 Hardware Requirements 

 
According to the analysis presented in previous 

sections, to perform matrix products with good a 

performance, the Hardware has to hit some criteria: 

• FPGA: High density FPGA containing a 

maximum of embedded multipliers are required to 

achieve good performance. High-end FPGA such 

as StratixII from Altera or VirtexII Pro and 

Virtex4 from Xilinx hit these criteria. It is also 

interesting to study the parallelisation of the 

matrix multiplication operation at a higher level 

by using a multi-FPGA board. 

• On-board Memory: to perform multiplications of 

matrixes 1000x1000, the board must be able to 

store in its RAM 3x10
6
 words of 64 bits (= 24 

Mbytes). The ideal case would be to have « dual 

port » memories which allow to write and to read 

data simultaneously. Using this sort of memory, 

while the FPGA computes the data and reads the 

data in RAM, we could write the data of the 

operands of the next matrix product, and thus 

pipeline the matrix multiplications and minimize 

the length of the periods during which the FPGA 

waits for the availability of new data operands. 

Unfortunately, these memories are expensive and 

of low capacity. 

• Interface: the FPGA board must have the fastest 

interface towards the host computer. Currently the 

fastest interface is the PCI Express 8x (see Figure 

2). 

 

4.3 Selected Prototyping Board Description 

 
Currently, only few boards hitting the requirements 

described in the previous section are available. The 

FPGA boards with PCI Express 8x interface contain 

very often only low RAM capacity or low density 

FPGAs. It is then necessary to find a compromise 

between capacity of storage, speed of data transfers 

and raw computation power.  

The selected board is a bi-FPGA board. It is 

composed of 2 FPGA StratixII 60 from Altera. The 

board has a PCI 64-bits 66 Mhz interface. It provides a 

theoretical bandwidth of 533 Mbytes/s. Each FPGA is 

connected to two 64 Mbytes SDRAM DDRII 333Mhz 

onboard memory banks with 32 bits data busses. The 

second FPGA is connected to a SODIMM interface 

which allows adding up to 1 Gbyte of SDRAM DDRII 

memory. The board SODIMM interface has a 64-bits 

data bus. 

 

4.4 Dual FPGA Computation 

 
The FPGA prototyping board is composed of 2 FPGA 

(see Figure 3). As each block of matrix C can be 

computed independently, matrix C is divided in 2 

blocks (see Figure 4) which are computed 

independently by the two FPGA of the board. As 

shown in Figure 3 and Figure 4, the onboard SDRAM 

memory banks connected to FPGA 1 receives the 
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upper half of matrix A and the onboard SDRAM 

memory banks connected to FPGA 2 receives the 

lower half of matrix A. As the 2 FPGA requires the 

complete matrix B to compute their block of matrix C, 

matrix B is stored in SODIMM memory bank and the 

data are transferred directly to FPGA 2 and are 

transferred to FPGA 1 through a direct FPGA 1 – 

FPGA 2 interconnection which implies the use of a 

synchronisation mechanism. 

 

4.5 DGEMM Implementation 

 
This section introduces the software part of the 

implementation of the hardware accelerated dgemm() 

function. As explained in the introduction of this 

article, the matrix multiplication on FPGA has to be 

performed in a transparent way for software using the 

BLAS library to perform this operation. The software 

interface of the hardware accelerated dgemm() is 

identical to the interface of the original dgemm() 

function of the BLAS library. Its functionality is thus  

reimplemented to compute the matrix multiplication 

on the FPGA board instead of the host computer 

processor. 

The software part has several roles: 

• Perform the conversions and reorganize the data 

operands and results to send them to the FPGA in 

the most appropriate order and format to 

maximize the “burst mode” data transfers between 

the SDRAM memory board and the FPGA. 

Indeed as explained in section 3.3, the onboard 

memory banks connected to the two FPGA 

provide 32-bits data busses. As we are working 

with 64-bits floating point data, in order to 

maximise the burst mode transfers at FPGA board 

level we have to split these 64-bits words in two 

independent 32-bits words. These words will be 

sent to the physically separated onboard memory 

banks of the FPGA board. This splitting operation 

is time consuming for the host processor and 

could be overcome by using a board providing 

onboard memory banks with 64-bits data busses. 

• Manage data transfers between the host computer 

and the FPGA board (PCI DMA Transfers), 

• Manage the execution of the operations performed 

by the FPGA. This operation is performed using 

registers available in the FPGA board memory 

and accessible by both the Software and the 

FPGA. 

 

 

 

 

5. Results 

 
This section introduces the measured results for the 

global performance of the implemented prototype. 

This section  also compares the measured performance 

of the hardware accelerated implementation of BLAS 

dgemm() operation to the measured performance of its 

ATLAS [12] software implementation. We performed 

the tests for matrix multiplication of 2 square matrix of 

size 1000x1000. The FPGA board is installed in a 

computer based on an Intel P4 dualcore 3Ghz 

processor with 1 Gbyte of SDRAM DDR. 

Related works [2,5,6,10] evaluate the performance 

of the matrix multiplication FPGA implementation 

only at FPGA local level by applying the theoretical 

relation (1) to FPGA design synthesis results. These 

results don’t take into account external factors like 

data transfers or software pre- and post-processing 

(see section 4.5) having an important impact on the 

global performances of the system.  

The results presented in this section are based on the 

global execution time of the hardware accelerated 

dgemm() function measured at host computer level. 

The measured results include: 

• Software data pre- and post-processing (host 

computer) 

• Data transfers between the host computer and the 

prototyping FPGA board 

• FPGA data processing (matrix multiplication 

operation) 

 

The measurement method we used is based on 

Windows system routines that count the number of 

host computer CPU clock cycles spent during the 

execution of the hardware accelerated dgemm() 

function. Using this method, we measured for this 

function an average execution time of 374,06 ms 

which corresponds to a computing power of 5,35 

Gflops/s. 

In order to compare this result with a fully software 

implementation of the same operation, we 

implemented the ATLAS optimised software version 

of the “dgemm” function [12]. On our Intel P4 

dualcore with 1 GByte of RAM we obtained the 

following total execution time for 100 matrix 

multiplications: 59,97 s. This result corresponds to a 

computing performance of 3,34 Gflops/s. 

 

6. Measured Performance Analysis 

 
This chapter analyses the measured performance 

presented in previous section. Section 6.1 estimates 

the theoretical raw computation performance of FPGA 

devices and section 6.2 introduces the factors 



impacting this raw performance result and introduces 

adapted solutions to minimize their impact on the 

global performance of the system.  
 

6.1 Theoretical Raw FPGA Computation 

Performance 

The theoretical raw FPGA computation 

performance can be calculated using expression (1). It 

depends mainly on total number of PE that can be 

placed in FPGA logic and their maximal running 

frequency. We estimated those two factors using a 

functional VHDL model of a PE we implemented. 

Moreover the most important component of each PE is 

the MAC unit. Consequently, according to routing and 

timing results of the VHDL implementation of a 64 bit 

floating point MAC unit (see Table 1) we can 

extrapolate theoretical raw computation performance 

of the implementation of matrix multiplication on 

FPGA. 

We can see at Table 1 that the FPGA resource 

limiting the total number of PE is the number of 

available embedded multipliers. A StratixII 60 

contains 144 embedded 18x18 bits multipliers and as 

presented in [2] one PE requires 9 embedded 

multipliers. It is thus possible to place 16 PE in a 

StratixII 60. According to the expression (1) and 

assuming the FPGA design will run at 200 Mhz, it is 

possible to evaluate the FPGA theoretical raw 

computation performance for one StratixII 60: 

FTRCP = 2 x 16 x 2OO Mhz = 6,4 Gflops/s 

As the prototyping board is composed of 2 FPGA 

StratixII 60 the total theoretical prototyping board raw 

computation performance is 12,8 Gflops/s. 

 

 

 

 

6.2 Performance Limitations 
 

Result of previous section doesn’t take into account 

the limiting factors introduced at section 2.4. Current  

section analyses and quantifies their impact on global 

performance of the system in order to estimate this 

value (see Figure 5). 

 

FPGA Design Complexity 

 

Based on the extrapolation of routing and timing 

results of the implementation of one PE, we estimated 

in section 4.1 that 2 StratixII 60 could contain up to 32 

PE and run at 200 Mhz delivering a total theoretical 

FPGA raw computation performance of 12,8 Gflops/s. 

Current section takes into account the FPGA internal 

hardware limitations.  

To evaluate this limitation, we implemented the 

complete FPGA design which is composed of 16 PE, 

the Master module (see Figure 1) and the SDRAM 

DDR2 memory controllers. Due to routing complexity 

of such a design the limiting factor isn’t the embedded 

multipliers anymore but now these are the available 

FPGA logical elements which are the limiting factor. 

Consequently, due to its limitation, it is not possible to 

place in the logic of a FPGA StratixII 60 a design 

composed of more than 14 PE.  

According to the timing analysis of the complete 

FPGA design, this one will not be able to run at more 

than 172 Mhz. As explained in section 3.2, if the 

SDRAM DDR2 memory controller runs at 172 Mhz 

the Master and the PE will receive new valid data 

from the SDRAM at a frequency of approximately 140 

Mhz (measured result).  

Based on these elements, we can evaluate the 

computation performance for 2 FPGA (CPF): 

 

CPF = 2 (FPGA)  x 2  x 14  x 140 Mhz = 7,8 Gflops/s 
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Figure 5 : Limitations impact on computation 

performances 

Table 1 : 64-bits MAC Performance 

ALTERA MAC IP OUR MAC IP

EP2S60-3 EP2S60-3

ALUT 2451 / 48352 1539 / 48352

MULT 18x18 9 / 144 9 / 144

Fmax 143,74 Mhz 235,32 Mhz

Pipeline Stages 14 14

 



As explained in section 3.1 the performance 

reduction caused by this limitation is hard to control 

and to minimize. It mainly depends on the internal 

structure of the FPGA. The only valid solution to 

significantly increase FPGA computation performance 

(see Figure 5) is to implement the design in a FPGA 

containing more logical elements and more embedded 

multipliers. 

 

Data Transfers 

 

As the prototyping FPGA board does not include « 

dual port » memories, the data transfers between the 

host computer and the FPGA board memory cannot be 

performed at the same time as the computation phase 

during which the FPGA performs continuous readings 

in local memory (see section 2.4). Separate transfer 

phases are thus added to the computation phases what 

will significantly reduce the global performance of the 

system. 

To evaluate the influence of these transfer phases on 

the computation performance we can calculate the 

computation time of the matrix multiplication on 

FPGA and add to this value the data transfer time. For 

operand square matrixes 1000x1000 the computation 

time of the matrix multiplication at 7,8 Gflops/s is 256 

ms. For this operation three 1000x1000 matrixes have 

to be transferred. As these matrixes are composed of 

64 bits elements the total amount of data to be 

transferred is 24 MBytes. According to the measured 

performances of the PCI 64-bits 66 Mhz (370 

Mbytes/s) the data transfer time is around 64,8 ms. 

The total latency including the computation and the 

data transfers is: 320,8 ms. According to this latency 

we are able to calculate the computation performance 

of the FPGA board (CPFB) [2]: 

CPFB = 
3208,0

102 9
⋅

flops/s = 6,234 Gflops/s 

This performance limitation could be overcome by 

adding more physically separated memory banks. 

Simply switching between the available memory 

banks, we are able to perform the memory transfers 

and the computations at the same time. The 

computation performance of the FPGA board (CPFB) 

could then be close to the computation performance of 

the FPGA (CPF): 7,8 Gflops/s.  

 

Background Software Processes  

 
As described in section 4.5 the host computer 

processor has to perform specific operations like data 

rearrangement, data conversion and data transfer 

management. These data rearrangement operations are 

time consuming for the host computer. As the FPGA 

design requires rearranged data in order to maximise 

its own “burst mode” memory readings, it has to wait 

that the host computer finished the rearrangement 

operations (see “Conv” steps at Figure ).    

 

The running steps shown at Figure  : 

1. The host computer (“µP” line) performs the 

rearrangement and the conversion of the data 

operands : “Conv A1”, “Conv A2” and “Conv B” 

steps. During this period the FPGA board doesn’t 

perform any computation. 

2. “Wr 1 & 2”: data transfers between the host 

computer and the FPGA board. As shown at 

Figure 6, this operation involves the central 

processor and the FPGA. 

3. “Matrix Mult FPGA 1” and “Matrix Mult FPGA 

2”: the FPGA performs the matrix multiplication 

operation. 

4. “Rd 1” and “Rd 2”: The result of the matrix 

multiplication is transferred from the FPGA board 

to the Host computer. 

5. “Conv C1” and  “Conv C2”: rearrangement and 

the conversion of the resulting matrix C. 

 

By implementing this sequence, we were able to 

measure the performance of the global system by 

measuring the execution time of 10 runs of the 

hardware accelerated function BLAS “dgemm”. 

According to the number of operations to be 

performed to multiply 2 matrixes 1000x1000 (2 

Gflops), the global performances in Gflops/s can be 

easily calculated for one execution of the matrix 

multiplication. If we consider the timing 

representation of Figure , we notice that the complete 

operation sequence takes 487,2 ms. This latency 

corresponds to the execution of 2 Gflops. The 

Hardware Accelerated DGEMM Measured 

Performances (HADMP) is: 

 HADMP = 1000
2,487

2
⋅ = 4,1 Gflops/s 

We notice at Figure  that during the FPGA 

computation phase “Matrix Mult FPGA 1” the 

processor of the host computer doesn’t perform any 

operation related to the “dgemm” function and during 

the conversion phases “Conv A1”, “Conv A2”, “Conv 

B” and “Conv C2” the two FPGA don’t perform any 

computation. If the data of the next computation 

(iteration J+1) are available at iteration J, it is possible 

to pipeline the conversion phases and the FPGA 

computation in order to achieve better performances. 

We can see on Figure  that the pipelined version of  



the hardware accelerated “dgemm” function has a total 

latency of:  

487,2 ms – 69,57 ms – 43,57 ms = 374,06 ms  

which corresponds to a computing power of 5,35 

Gflops/s. 

 

Analysing the results of pipelined version of the 

accelerated “dgemm” function presented at Figure 8, 

we notice that using a board with more FPGA or a 

board with higher density FPGA will lead to a pipeline 

stall. Indeed, using higher density FPGA will allow to 

place more PE in the FPGA and will thus reduce 

“Matrix Mult FPGA 1” and “Matrix Mult FPGA 2” 

phases. If these 2 phases are too short, the processor of 

the host computer cannot sustain the data operand 

need of the FPGA board. The FPGA will have to wait 

that the host processor finished the data rearrangement 

and conversion. To calculate the maximal achievable 

performance without pipeline stall, we have to 

calculate the processing time of the host computer 

during “Matrix Mult FPGA 2” phase: 147,14 ms. This 

value corresponds to the lower limit of “Matrix Mult 

FPGA 2” duration. Knowing this lower limit we can 

evaluate the minimal global latency by adding to 

147,14 ms the latency of  “Wr 1 & 2” and “Rd 2” 

phases. This minimal global latency corresponds to a 

maximal achievable performance of: 

 

Max Performance  = 1000
27,209

2
⋅ = 9,55 Gflops/s 

 

7. Adapted FPGA Board Requirements  

 

Considering the analysis of the previous sections, 

we can build the requirements of an ideal FPGA board 

for high performance computing applications. This 

board has to respect the following criteria: 

• It has to contain one or several high density 

FPGA containing a large number of embedded 

multipliers. 

• It has to provide at least 4 independent memory 

banks with 64-bits data busses for each FPGA in 

order to parallelize the computation phases and 

the transfer phases. 

• It has to provide a communication interface to the 

host computer with the largest bandwidth 

possible. E.g. PCI Express 8x. 

Conv A1 Conv A2 Conv B Wr 1 & 2

Matrix Mult FPGA 1 Rd 1

Rd 2

Conv C2

Matrix Mult FPGA 2

69,57 49,67 233,66 10,61 43,57 12,46 23,73

µP

FPGA 1

FPGA 2

Wr 1 & 2

Wr 1 & 2

Rd 1 Conv C1 Rd 2

4,23

292,07

t [ms]

 

Figure 6 : Running steps of the Hardware Accelerated DGEMM 
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Figure 7 : Pipelined Hardware Accelerated DGEMM 



8. Conclusion 

 
In this paper, we introduce the implementation of a 

FPGA-based hardware accelerator for BLAS library. 

We first describe a theoretical analysis and introduce 

the main possible limitations. We show that the 

limiting factors come mainly from sources external to 

the FPGA. Based on this analysis we choose to 

implement BLAS matrix multiplication operation 

“dgemm”, using optimised algorithms and optimised 

FPGA architecture. Using a dual-FPGA board, 

selected according to preliminary requirements 

described in the theoretical analysis, we have 

developed a fully functional prototype. Based on the 

theoretical analysis of performance and limitations, 

and on the prototype measured performance, we 

highlight the three main limitation sources. We 

analyse their impact on the system performance and 

introduce possible solutions to minimise it. We show 

that our prototype is able to achieve a computation 

performance of 5,35 Gflops/s which is 60% higher 

than the measured performance of a high-end 

processor running the ATLAS optimised version of 

the BLAS library. Based on all these results we finally 

introduce the requirements of an adapted FPGA board 

allowing the highest performance possible.  
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