
A High Performance FPGA-Based Accelerator for BLAS Library

Implementation

Sébastien Rousseaux

CETIC
1
, Belgium

sr@cetic.be

Damien Hubaux

CETIC
1
, Belgium

dh@etic.be

Pierre Guisset

CETIC
1
, Belgium

pg@cetic.be

Jean-Didier Legat

UCL
2
, Belgium

doyen@fsa.ucl.be

1Center of Excellence in Information and Communication Technologies
2Université Catholique de Louvain

Abstract

This paper describes the implementation and the

performance analysis of a hardware accelerator for

the BLAS library matrix multiplication operation. This

accelerator is based on a dual-FPGA board and on an

implementation BLAS software library making use of

the FPGA-based hardware. In order to evaluate the

performance of such a system, we implemented the

matrix multiplication operation (BLAS “dgemm”

function) using an optimized matrix multiplication

FPGA design and we implemented the software

“dgemm()” function to make use of the FPGA-based

board in a completely transparent way for the user. In

contrast with others works [2,5,6,10], the measured

performance is based on the global runtime of the

FPGA-accelerated “dgemm” function at software

level, taking into account the data transfers between

the host computer and the FPGA board, and the

software pre- and post-processing. We show that using

the developed FPGA-based BLAS accelerator it is

possible to achieve 60% higher performance than a

fully software implementation running on a high-end

computer. Through a detailed analysis, this paper also

shows that the most limiting factors are data transfers

between the host computer memory and the FPGA

board memory, and the data transfers between this

memory and the FPGA itself.

1. Introduction

Over the last few years, the quality and the precision

of models produced by virtual prototyping and

numerical simulation software increased significantly.

Keeping up with such high standards of quality and

precision requires significant and constant increase of

computation power. The current solution consists in

using machines with more and more processors.

Unfortunately, this solution is suboptimal and very

expensive.

Next to classic processors, the computation power

of another sort of device is growing every day: That of

programmable logic components like FPGA. One of

their advantages compared to the classic processors is

their capacity to perform a large number of operations

in parallel. Several supercomputers manufacturers are

interested in the use of the performance obtained with

FPGA to accelerate the execution of software [12].

The prototyping and numerical simulation software

massively use algebraic methods of system resolution.

Most of these methods are based on operations such as

matrix multiplication, matrix factorisation, etc.

According to their importance these operations are

grouped together in libraries. Among the most used,

we find the BLAS library (Basic Linear Algebraic

Subprograms). Most of the BLAS operations requires

a lot of computing power, so it could be useful to

decentralise their computation on a specialised board

to accelerate their execution.

This paper studies the conception of a FPGA based

Hardware accelerator for the BLAS library and

analyses the constraints impacting the global

performances of the system. The purpose of this

accelerator is to decentralize and to speed up the

execution of the BLAS library.

This article is organized as follows: Section 2

presents the theoretical basis; Section 3 describes the

preliminary evaluation of theoretical performance;

Section 4 describes the implemented algorithms and

the hardware used to build the prototype; Section 5

introduces the measured results; Section 6 presents a

detailed performance analysis; based on this analysis,

section 7 introduces the requirements of an adapted

FPGA board and section 8 draws the conclusions of

the work.

2. Background

This section presents the theoretical base for the

implementation of a BLAS operation and introduces

the architecture of the implemented system.

2.1 The BLAS Library

Algebraic operations such as matrix multiplication

or factorisation are key operations in numerous

software algorithms of systems resolution. For this

reason, these operations are often grouped together in

standardised libraries. One of the most used library is

the BLAS library (Basic Linear Algebraic

Subprogram) [11]. It defines a standard interface and a

standard implementation for basic vector and matrix

operations. They are grouped in 3 levels following the

type of the operands: level 1 for operands of type

vector-vector, level 2 for operands of type vector-

matrix and level 3 for operands of type matrix-matrix.

These operations can be reimplemented by the

developers to optimize performance.

2.2 Preliminary System Description

The main purpose of the FPGA Hardware

accelerator is to speed up BLAS library operations. Its

main requirements are:

• The use of the FPGA hardware accelerator has to

be transparent for the user

• It has to install easily in a common computer to

increase its computing performance while using

BLAS library operations. The board will be then

composed of a standard communication interface

(PCI/PCI-X/PCIe).

The architecture of the hardware is composed of a

host computer running the BLAS based application

PCI/PCI-X/PCI Express

RAM

DDRII

Central Memory
Central

CPU

FPGA

Altera StratixII

PCI/PCI-X/PCI ExpressPCI/PCI-X/PCI Express

RAM

DDRII

Central Memory
Central

CPU

FPGA

Altera StratixII

PE PE PE

PE PE PE

MASTER

FPGA Altera StratixII

Figure 1 : General System Architecture

and a FPGA board plugged in the mainboard of the

computer.

As shown at Figure 1 the global system is composed

of 5 main components:

1. The CPU of the host computer, which performs

the software data processing of the BLAS library

and manages the data transfers between the

Central Memory and the FPGA board

2. The Central Memory, which contains the global

data operands to be transferred to the FPGA board

3. The FPGA board communication interface

(PCI/PCI-X/PCIe): This interface has an

important impact on the global performances of

the Hardware accelerator.

4. The FPGA, which performs the calculations and

controls the RAM memory of the FPGA board.

5. The local RAM memory of the board, which

contains the operands of the operations.

An advantage of the FPGA for High Performance

Computing applications is their ability to perform a

huge number of operations in parallel. Taking this

specificity into account, the structure of the FPGA

design will be composed of many Processing Elements

(PE) running in parallel and of a module managing

computations and data transfers (see Figure 1).

3. Theoretical Analysis

3.1 Performance

Based on the FPGA design architecture (see Figure

1), the FPGA theoretical raw computation

performance (FTRCP) can be evaluated using the

following expression [2]:

FTRCP = Op x PE x Fmax [Gflops/s] (1)

Where:

• Op = The number of floating point operations

performed by each Processing Element per clock

cycle

• PE = The number of Processing elements in the

FPGA design

• Fmax = The maximal frequency of the FPGA

design

It clearly appears that the raw computation

performance strongly depends on the number of PE in

the FPGA and thus on the number of operations

performed in parallel. The FPGA features impacting

the number of PE are their spatial density (number of

Logical Elements) and their available resources

(embedded multipliers, internal SRAM, etc). The

number of PE can be increased by selecting a FPGA

containing more logical elements.

The maximal frequency mainly depends on

complexity and optimisation of the FPGA design. It is

difficult to increase this value significantly.

This expression (1) doesn’t take into account the

data transfer performance. The impact of data transfer

on global performance is discussed in sections 3.2 and

6.1.

3.2 Preliminary Limitation Analysis

As described in section 2.2, the global system is

composed of 5 main components. To analyse the

performance limitations we consider that the FPGA

has an important power of raw computation and isn’t

limiting the global performance of the system. In such

circumstances the high computation performance of

the FPGA are mainly limited by external factors.

There are two main factors that can reduce the

performances:

1. The software processes running on the host

computer and limiting the availability of

computation data for the FPGA board

2. The data transfers

Data transfers between the host computer and the

FPGA board

Actual FPGA boards are equipped with SDRAM

DDR or SDRAM DDR2 memory. This type of

memory isn’t “Dual Port”: it is not possible to perform

write and read operations at the same time. During the

computation phase, the FPGA reads continuously its

operands in the RAM memory of the board. As it isn’t

possible to write data in this FPGA board RAM

memory during this phase without an important loss of

performances, the host computer has to wait for the

end of the FPGA computations to download the results

from the board memory to the central memory of the

system and to upload new data for the next

computation. During these transfer phases, the FPGA

isn’t able to perform any computation which

significantly reduces the global performance.

Consequently, global performance will closely

depend on the maximum bandwidth of this

communication interface. The most widespread board

interfaces and their maximal bandwidth are presented

in Figure 2. We can see that currently, the PCI Express

8x bus has the largest bandwidth.

Figure 2 : Communication Interfaces

Data transfers between the board memory and the

FPGA

In order to run at full speed, the FPGA needs to

access as fast as possible the operands contained on

the board memory. The performance of memory

accesses is linked to the performance of the memory

controller implemented in FPGA logic. As the

maximal running frequency (Fmax) of the FPGA

design is limited due to its complexity, this will impact

the performance of the memory controller. Ideally, if

the FPGA design and thus the memory controller ran

at 200 Mhz, the FPGA would receive new valid data

from the board memory at every clock cycle at 200

Mhz. As the SDRAM memories have a yield of

around 75%, the FPGA design only receives new valid

data every clock cycle at approximately 150 Mhz. So

to avoid breaks in the data stream, the FPGA design

will run at a maximal speed of 150 Mhz. This will

reduce the raw computation performance of the FPGA

and thus the global performance of the system.

Global Performance Maximisation

To maximize the performance we have to:

• Use a FPGA board with the fastest interface. E.g.

PCI Express 8x

• Optimise the FPGA design to maximise the

running frequency of the FPGA

• On the algorithmic side: Minimize the amount of

data accesses and maximize the number of

operations performed on one transferred data.

By analogy to the theory introduced in [9], we

define the factor Va representing the number of

operations that can be performed for every Word

transferred from the board memory to the FPGA.

Va = O / Ma

Where:

• O = the total number of performed operations

• Ma = the total number of memory accesses

4 Gbytes/sPCI Express 8x

2 Gbytes/sPCI Express 4x

500 Mbytes/sPCI Express 1x

1 Gbyte/sPCI-X 133Mhz

533 Mbytes/s
PCI 66Mhz

64bits

BandwidthBus Type

4 Gbytes/sPCI Express 8x

2 Gbytes/sPCI Express 4x

500 Mbytes/sPCI Express 1x

1 Gbyte/sPCI-X 133Mhz

533 Mbytes/s
PCI 66Mhz

64bits

BandwidthBus Type

3.3 BLAS Operation Selection

According to the previous section analysis, the most

interesting operation to study maximise the factor Va.

As described in section 2.1 the BLAS library is

composed of 3 levels according to operand type.

• BLAS level 1: scalar multiplication of 2 vectors

of size n:

O = 2 x n, Ma = 2 x n � Va = 1

• BLAS level 2: vector-matrix multiplication:

O = 2 x n2, Ma = n x (n+1) � Va = (2xn)/(n+1)

• BLAS level 3: matrix multiplication of square

matrixes of size nxn:

O = 2 x n3, Ma = 2 x n2 � Va = n

As shown in these three examples the BLAS

operations with the highest factor Va is a level 3

operation. The matrix multiplication is an interesting

operation to implement in the prototype due to its

parallelisation capabilities and its importance in many

system resolution algorithms. The operations based on

64-bit floating point operands require a lot of

processing power. We thus implement the 64-bit

floating point matrix multiplication operation in the

FPGA based hardware accelerator prototype. This

operation corresponds to the BLAS operation:

“dgemm()”.

4. FPGA based Hardware Accelerator

Prototype

This chapter describes the implementation of the

FPGA based BLAS “dgemm()” accelerator.

4.1 FPGA Design Description

This section describes the FPGA design

implementing Matrix multiplication operation and

optimisations applied to maximise its performance.

Consider 3 matrixes A, B and C of sizes

respectively MxN, NxK and MxK. Matrix C is the

result of the matrix product of A and B. The elements

of C are calculated as follows:

With i = 1,…,M and j = 1,…,K

We notice that the matrix multiplication is

exclusively composed of sums of products (“Multiply

and Accumulate” operations (MAC)). The processing

core of each PE is thus a MAC unit. According to the

number of PE and the size of matrix A and B each PE

computes (MxK) \ PE elements of C. The total number

of performed operations is: 2 x N x M x K.

Following the analysis presented in [2], two main

algorithmic optimisations have been applied to the

basic matrix multiplication algorithm to take

advantage of the FPGA features:

1. Block product: This optimization is important for

the implementation of matrix multiplication

operation on FPGA in order to reduce the FPGA

on-chip memory requirement. The matrix C is

divided into a certain number of blocks of size

(SixSj). Each of these blocks is the result of the

matrix product of a block (SixN) of A and of a

block (NxSj) of B. The computation of the

various blocks of C are independent some of the

others.

2. Re-use of elements of matrix A: If we analyze the

classic algorithm of the matrix multiplication, we

notice that every element of the matrix A is

reused K time. For every element of A

transferred, we can execute K calculation using K

elements of B. Considering this feature, by storing

in FPGA internal memory a small number of

elements of matrix A we can perform a large

number of operations. We reduce significantly the

requirements of bandwidth between the RAM

memory on the FPGA board and the FPGA itself.

On the FPGA design architecture side, the

organisation of the PE in the FPGA plays an important

role in the performance of the matrix multiplier.

Indeed, every clock cycle, every PE performs a

multiplication followed by an addition in 64 bits

floating point. Every clock cycle, each PE thus

requires two 64-bits data operands. If all the PE of

Figure 1 were connected in parallel to module «

Master » and if the FPGA contained, for example, 16

PE, every clock cycle, 32 words of 64-bits would be

downloaded from the SDRAM. At 200 Mhz it

represents a need in bandwidth of more than 50

Gbytes/s which cannot be reached with current

SDRAM memories.

An approach to tackle this problem, presented in [2],

is a pipelined structure for the PE (see Figure 1).

Except for the first PE which is directly connected to

the "master", every PE is connected only to the

previous PE and to the next PE in the pipeline. All the

elements of matrixes A and B are thus going to

circulate through every PE of the design. Each PE

selects the elements they have to store according to the

values of the matrix C they have to calculate and

according to its position in the pipeline. Every clock

∑
=

⋅=

N

k

kjikij BAC
0

cycle, the module « master » receives and transmits

one element of A and one element of B to the first PE.

These elements are then going to progress from PE to

PE every clock cycle. The required bandwidth is now

of 2 x 64-bits x 200 Mhz = 3,2 Gbytes/s what can be

reached with two 64 bits SDRAM DDRII 333Mhz

memories for example.

We implemented the MAC units using the

optimised algorithms presented in [2,7,8] and making

an intensive use of architectural features of modern

FPGA like fast embedded multipliers and shift

registers [7,8].

4.2 Hardware Requirements

According to the analysis presented in previous

sections, to perform matrix products with good a

performance, the Hardware has to hit some criteria:

• FPGA: High density FPGA containing a

maximum of embedded multipliers are required to

achieve good performance. High-end FPGA such

as StratixII from Altera or VirtexII Pro and

Virtex4 from Xilinx hit these criteria. It is also

interesting to study the parallelisation of the

matrix multiplication operation at a higher level

by using a multi-FPGA board.

• On-board Memory: to perform multiplications of

matrixes 1000x1000, the board must be able to

store in its RAM 3x10
6
 words of 64 bits (= 24

Mbytes). The ideal case would be to have « dual

port » memories which allow to write and to read

data simultaneously. Using this sort of memory,

while the FPGA computes the data and reads the

data in RAM, we could write the data of the

operands of the next matrix product, and thus

pipeline the matrix multiplications and minimize

the length of the periods during which the FPGA

waits for the availability of new data operands.

Unfortunately, these memories are expensive and

of low capacity.

• Interface: the FPGA board must have the fastest

interface towards the host computer. Currently the

fastest interface is the PCI Express 8x (see Figure

2).

4.3 Selected Prototyping Board Description

Currently, only few boards hitting the requirements

described in the previous section are available. The

FPGA boards with PCI Express 8x interface contain

very often only low RAM capacity or low density

FPGAs. It is then necessary to find a compromise

between capacity of storage, speed of data transfers

and raw computation power.

The selected board is a bi-FPGA board. It is

composed of 2 FPGA StratixII 60 from Altera. The

board has a PCI 64-bits 66 Mhz interface. It provides a

theoretical bandwidth of 533 Mbytes/s. Each FPGA is

connected to two 64 Mbytes SDRAM DDRII 333Mhz

onboard memory banks with 32 bits data busses. The

second FPGA is connected to a SODIMM interface

which allows adding up to 1 Gbyte of SDRAM DDRII

memory. The board SODIMM interface has a 64-bits

data bus.

4.4 Dual FPGA Computation

The FPGA prototyping board is composed of 2 FPGA

(see Figure 3). As each block of matrix C can be

computed independently, matrix C is divided in 2

blocks (see Figure 4) which are computed

independently by the two FPGA of the board. As

shown in Figure 3 and Figure 4, the onboard SDRAM

memory banks connected to FPGA 1 receives the

PCIPCI

FPGA1 FPGA2 FPGA3 FPGA4

A A A A
64MB

RAM

64MB

RAM

64MB

RAM

64MB

RAM

B
<1GB

RAM

BRID
GE

Version 1 FPGA

Version 2 FPGA

Version 4 FPGA

32 32 32 32 32 32 32 32

64 64

64

64 110 110

Figure 4 : FPGA board description

A B

=

FPGA 1 Memory

FPGA 2 Memory

FPGA 2 SODIMM Memory

FPGA 1 Memory

FPGA 2 Memory

C

Figure 4 : FPGA Computation Repartition

upper half of matrix A and the onboard SDRAM

memory banks connected to FPGA 2 receives the

lower half of matrix A. As the 2 FPGA requires the

complete matrix B to compute their block of matrix C,

matrix B is stored in SODIMM memory bank and the

data are transferred directly to FPGA 2 and are

transferred to FPGA 1 through a direct FPGA 1 –

FPGA 2 interconnection which implies the use of a

synchronisation mechanism.

4.5 DGEMM Implementation

This section introduces the software part of the

implementation of the hardware accelerated dgemm()

function. As explained in the introduction of this

article, the matrix multiplication on FPGA has to be

performed in a transparent way for software using the

BLAS library to perform this operation. The software

interface of the hardware accelerated dgemm() is

identical to the interface of the original dgemm()

function of the BLAS library. Its functionality is thus

reimplemented to compute the matrix multiplication

on the FPGA board instead of the host computer

processor.

The software part has several roles:

• Perform the conversions and reorganize the data

operands and results to send them to the FPGA in

the most appropriate order and format to

maximize the “burst mode” data transfers between

the SDRAM memory board and the FPGA.

Indeed as explained in section 3.3, the onboard

memory banks connected to the two FPGA

provide 32-bits data busses. As we are working

with 64-bits floating point data, in order to

maximise the burst mode transfers at FPGA board

level we have to split these 64-bits words in two

independent 32-bits words. These words will be

sent to the physically separated onboard memory

banks of the FPGA board. This splitting operation

is time consuming for the host processor and

could be overcome by using a board providing

onboard memory banks with 64-bits data busses.

• Manage data transfers between the host computer

and the FPGA board (PCI DMA Transfers),

• Manage the execution of the operations performed

by the FPGA. This operation is performed using

registers available in the FPGA board memory

and accessible by both the Software and the

FPGA.

5. Results

This section introduces the measured results for the

global performance of the implemented prototype.

This section also compares the measured performance

of the hardware accelerated implementation of BLAS

dgemm() operation to the measured performance of its

ATLAS [12] software implementation. We performed

the tests for matrix multiplication of 2 square matrix of

size 1000x1000. The FPGA board is installed in a

computer based on an Intel P4 dualcore 3Ghz

processor with 1 Gbyte of SDRAM DDR.

Related works [2,5,6,10] evaluate the performance

of the matrix multiplication FPGA implementation

only at FPGA local level by applying the theoretical

relation (1) to FPGA design synthesis results. These

results don’t take into account external factors like

data transfers or software pre- and post-processing

(see section 4.5) having an important impact on the

global performances of the system.

The results presented in this section are based on the

global execution time of the hardware accelerated

dgemm() function measured at host computer level.

The measured results include:

• Software data pre- and post-processing (host

computer)

• Data transfers between the host computer and the

prototyping FPGA board

• FPGA data processing (matrix multiplication

operation)

The measurement method we used is based on

Windows system routines that count the number of

host computer CPU clock cycles spent during the

execution of the hardware accelerated dgemm()

function. Using this method, we measured for this

function an average execution time of 374,06 ms

which corresponds to a computing power of 5,35

Gflops/s.

In order to compare this result with a fully software

implementation of the same operation, we

implemented the ATLAS optimised software version

of the “dgemm” function [12]. On our Intel P4

dualcore with 1 GByte of RAM we obtained the

following total execution time for 100 matrix

multiplications: 59,97 s. This result corresponds to a

computing performance of 3,34 Gflops/s.

6. Measured Performance Analysis

This chapter analyses the measured performance

presented in previous section. Section 6.1 estimates

the theoretical raw computation performance of FPGA

devices and section 6.2 introduces the factors

impacting this raw performance result and introduces

adapted solutions to minimize their impact on the

global performance of the system.

6.1 Theoretical Raw FPGA Computation

Performance

The theoretical raw FPGA computation

performance can be calculated using expression (1). It

depends mainly on total number of PE that can be

placed in FPGA logic and their maximal running

frequency. We estimated those two factors using a

functional VHDL model of a PE we implemented.

Moreover the most important component of each PE is

the MAC unit. Consequently, according to routing and

timing results of the VHDL implementation of a 64 bit

floating point MAC unit (see Table 1) we can

extrapolate theoretical raw computation performance

of the implementation of matrix multiplication on

FPGA.

We can see at Table 1 that the FPGA resource

limiting the total number of PE is the number of

available embedded multipliers. A StratixII 60

contains 144 embedded 18x18 bits multipliers and as

presented in [2] one PE requires 9 embedded

multipliers. It is thus possible to place 16 PE in a

StratixII 60. According to the expression (1) and

assuming the FPGA design will run at 200 Mhz, it is

possible to evaluate the FPGA theoretical raw

computation performance for one StratixII 60:

FTRCP = 2 x 16 x 2OO Mhz = 6,4 Gflops/s

As the prototyping board is composed of 2 FPGA

StratixII 60 the total theoretical prototyping board raw

computation performance is 12,8 Gflops/s.

6.2 Performance Limitations

Result of previous section doesn’t take into account

the limiting factors introduced at section 2.4. Current

section analyses and quantifies their impact on global

performance of the system in order to estimate this

value (see Figure 5).

FPGA Design Complexity

Based on the extrapolation of routing and timing

results of the implementation of one PE, we estimated

in section 4.1 that 2 StratixII 60 could contain up to 32

PE and run at 200 Mhz delivering a total theoretical

FPGA raw computation performance of 12,8 Gflops/s.

Current section takes into account the FPGA internal

hardware limitations.

To evaluate this limitation, we implemented the

complete FPGA design which is composed of 16 PE,

the Master module (see Figure 1) and the SDRAM

DDR2 memory controllers. Due to routing complexity

of such a design the limiting factor isn’t the embedded

multipliers anymore but now these are the available

FPGA logical elements which are the limiting factor.

Consequently, due to its limitation, it is not possible to

place in the logic of a FPGA StratixII 60 a design

composed of more than 14 PE.

According to the timing analysis of the complete

FPGA design, this one will not be able to run at more

than 172 Mhz. As explained in section 3.2, if the

SDRAM DDR2 memory controller runs at 172 Mhz

the Master and the PE will receive new valid data

from the SDRAM at a frequency of approximately 140

Mhz (measured result).

Based on these elements, we can evaluate the

computation performance for 2 FPGA (CPF):

CPF = 2 (FPGA) x 2 x 14 x 140 Mhz = 7,8 Gflops/s

Computation
Performance (Gflops/s)

Limitations

12,8

2 FPGA StratixII 60

Theoretical raw FPGA computation performance

7,8 FPGA Computation performance

6,2 Prototyping board computation performance

5,35 Hardware accelerated DGEMM measured performance

Figure 5 : Limitations impact on computation

performances

Table 1 : 64-bits MAC Performance

ALTERA MAC IP OUR MAC IP

EP2S60-3 EP2S60-3

ALUT 2451 / 48352 1539 / 48352

MULT 18x18 9 / 144 9 / 144

Fmax 143,74 Mhz 235,32 Mhz

Pipeline Stages 14 14

As explained in section 3.1 the performance

reduction caused by this limitation is hard to control

and to minimize. It mainly depends on the internal

structure of the FPGA. The only valid solution to

significantly increase FPGA computation performance

(see Figure 5) is to implement the design in a FPGA

containing more logical elements and more embedded

multipliers.

Data Transfers

As the prototyping FPGA board does not include «

dual port » memories, the data transfers between the

host computer and the FPGA board memory cannot be

performed at the same time as the computation phase

during which the FPGA performs continuous readings

in local memory (see section 2.4). Separate transfer

phases are thus added to the computation phases what

will significantly reduce the global performance of the

system.

To evaluate the influence of these transfer phases on

the computation performance we can calculate the

computation time of the matrix multiplication on

FPGA and add to this value the data transfer time. For

operand square matrixes 1000x1000 the computation

time of the matrix multiplication at 7,8 Gflops/s is 256

ms. For this operation three 1000x1000 matrixes have

to be transferred. As these matrixes are composed of

64 bits elements the total amount of data to be

transferred is 24 MBytes. According to the measured

performances of the PCI 64-bits 66 Mhz (370

Mbytes/s) the data transfer time is around 64,8 ms.

The total latency including the computation and the

data transfers is: 320,8 ms. According to this latency

we are able to calculate the computation performance

of the FPGA board (CPFB) [2]:

CPFB =
3208,0

102 9
⋅

flops/s = 6,234 Gflops/s

This performance limitation could be overcome by

adding more physically separated memory banks.

Simply switching between the available memory

banks, we are able to perform the memory transfers

and the computations at the same time. The

computation performance of the FPGA board (CPFB)

could then be close to the computation performance of

the FPGA (CPF): 7,8 Gflops/s.

Background Software Processes

As described in section 4.5 the host computer

processor has to perform specific operations like data

rearrangement, data conversion and data transfer

management. These data rearrangement operations are

time consuming for the host computer. As the FPGA

design requires rearranged data in order to maximise

its own “burst mode” memory readings, it has to wait

that the host computer finished the rearrangement

operations (see “Conv” steps at Figure).

The running steps shown at Figure :

1. The host computer (“µP” line) performs the

rearrangement and the conversion of the data

operands : “Conv A1”, “Conv A2” and “Conv B”

steps. During this period the FPGA board doesn’t

perform any computation.

2. “Wr 1 & 2”: data transfers between the host

computer and the FPGA board. As shown at

Figure 6, this operation involves the central

processor and the FPGA.

3. “Matrix Mult FPGA 1” and “Matrix Mult FPGA

2”: the FPGA performs the matrix multiplication

operation.

4. “Rd 1” and “Rd 2”: The result of the matrix

multiplication is transferred from the FPGA board

to the Host computer.

5. “Conv C1” and “Conv C2”: rearrangement and

the conversion of the resulting matrix C.

By implementing this sequence, we were able to

measure the performance of the global system by

measuring the execution time of 10 runs of the

hardware accelerated function BLAS “dgemm”.

According to the number of operations to be

performed to multiply 2 matrixes 1000x1000 (2

Gflops), the global performances in Gflops/s can be

easily calculated for one execution of the matrix

multiplication. If we consider the timing

representation of Figure , we notice that the complete

operation sequence takes 487,2 ms. This latency

corresponds to the execution of 2 Gflops. The

Hardware Accelerated DGEMM Measured

Performances (HADMP) is:

 HADMP = 1000
2,487

2
⋅ = 4,1 Gflops/s

We notice at Figure that during the FPGA

computation phase “Matrix Mult FPGA 1” the

processor of the host computer doesn’t perform any

operation related to the “dgemm” function and during

the conversion phases “Conv A1”, “Conv A2”, “Conv

B” and “Conv C2” the two FPGA don’t perform any

computation. If the data of the next computation

(iteration J+1) are available at iteration J, it is possible

to pipeline the conversion phases and the FPGA

computation in order to achieve better performances.

We can see on Figure that the pipelined version of

the hardware accelerated “dgemm” function has a total

latency of:

487,2 ms – 69,57 ms – 43,57 ms = 374,06 ms

which corresponds to a computing power of 5,35

Gflops/s.

Analysing the results of pipelined version of the

accelerated “dgemm” function presented at Figure 8,

we notice that using a board with more FPGA or a

board with higher density FPGA will lead to a pipeline

stall. Indeed, using higher density FPGA will allow to

place more PE in the FPGA and will thus reduce

“Matrix Mult FPGA 1” and “Matrix Mult FPGA 2”

phases. If these 2 phases are too short, the processor of

the host computer cannot sustain the data operand

need of the FPGA board. The FPGA will have to wait

that the host processor finished the data rearrangement

and conversion. To calculate the maximal achievable

performance without pipeline stall, we have to

calculate the processing time of the host computer

during “Matrix Mult FPGA 2” phase: 147,14 ms. This

value corresponds to the lower limit of “Matrix Mult

FPGA 2” duration. Knowing this lower limit we can

evaluate the minimal global latency by adding to

147,14 ms the latency of “Wr 1 & 2” and “Rd 2”

phases. This minimal global latency corresponds to a

maximal achievable performance of:

Max Performance = 1000
27,209

2
⋅ = 9,55 Gflops/s

7. Adapted FPGA Board Requirements

Considering the analysis of the previous sections,

we can build the requirements of an ideal FPGA board

for high performance computing applications. This

board has to respect the following criteria:

• It has to contain one or several high density

FPGA containing a large number of embedded

multipliers.

• It has to provide at least 4 independent memory

banks with 64-bits data busses for each FPGA in

order to parallelize the computation phases and

the transfer phases.

• It has to provide a communication interface to the

host computer with the largest bandwidth

possible. E.g. PCI Express 8x.

Conv A1 Conv A2 Conv B Wr 1 & 2

Matrix Mult FPGA 1 Rd 1

Rd 2

Conv C2

Matrix Mult FPGA 2

69,57 49,67 233,66 10,61 43,57 12,46 23,73

µP

FPGA 1

FPGA 2

Wr 1 & 2

Wr 1 & 2

Rd 1 Conv C1 Rd 2

4,23

292,07

t [ms]

Figure 6 : Running steps of the Hardware Accelerated DGEMM

Wr 1 & 2

Matrix Mult FPGA 1 Rd 1

Rd 2

10,61 43,57 12,4623,73

µP

FPGA 1

FPGA 2

Wr 1 & 2

Wr 1 & 2

Rd 1 Conv C1 Rd 2

4,23

292,07

Conv C2Conv A1 Conv A2 Conv B

Matrix Mult FPGA 2

J

J+1J-1

J

J

J

J+1 J+1 J J J

J

JJ

49,67 69,57 t [ms]

Figure 7 : Pipelined Hardware Accelerated DGEMM

8. Conclusion

In this paper, we introduce the implementation of a

FPGA-based hardware accelerator for BLAS library.

We first describe a theoretical analysis and introduce

the main possible limitations. We show that the

limiting factors come mainly from sources external to

the FPGA. Based on this analysis we choose to

implement BLAS matrix multiplication operation

“dgemm”, using optimised algorithms and optimised

FPGA architecture. Using a dual-FPGA board,

selected according to preliminary requirements

described in the theoretical analysis, we have

developed a fully functional prototype. Based on the

theoretical analysis of performance and limitations,

and on the prototype measured performance, we

highlight the three main limitation sources. We

analyse their impact on the system performance and

introduce possible solutions to minimise it. We show

that our prototype is able to achieve a computation

performance of 5,35 Gflops/s which is 60% higher

than the measured performance of a high-end

processor running the ATLAS optimised version of

the BLAS library. Based on all these results we finally

introduce the requirements of an adapted FPGA board

allowing the highest performance possible.

9. Acknowledgments

The work described in this paper is based on the

results of the CANAPE project (“Calcul Numérique

sur Architecture Programmable”) partially funded by

Belgian Walloon region.

10. References

[1] Dr. Olaf Storaasli, “Reconfigurable Scalable Computing

(RSC)”, Computational Structures and Materials &

Electronics Systems, NASA Langley Research Center

[2] Yong Dou, S. Vassiliadis, G. K. Kuzmanov and G. N.

Gaydadjiev, “64-bit Floating-Point FPGA Matrix

Multiplication”, FPGA’05, Monterey, California, USA,

February 20–22, 2005

[3] Keith Underwood, “FPGAs vs. CPUs: Trends in Peak

FloatingPoint Performance”, FPGA’04, Monterey,

California, USA, February 22-24, 2004

[4] M. deLorimier, “FloatingPointSparse MatrixVector

Multiply for FPGAs”, FPGA’05, Monterey, California,

USA, February 20–22, 2005

[5] K. D. Underwood and K. S. Hemmert, “Closing the gap:

CPU and FPGA Trends in sustainable floating-point BLAS

performance”, In Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing machines (FCCM

2004), April 2004.

[6] L. Zhuo and V. K. Prasanna, “Scalable and Modular

Algorithms for Floating-Point Matrix Multiplication on

FPGAs” In Proceedings of the 18th International Parallel

and Distributed Processing Symposium (IPDPS’04), April

2004.

[7] E. Roesler, B. Nelson, “Novel Optimizations for

Hardware Floating-Point Units in a Modern FPGA

Architecture”, FPL'2002, Aug/Sep 2002.

[8] J-L. Beuchat, A. Tisserand, “Small Multiplier-based

Multiplication and Division Operators for Virtex-II

Devices”, research report of the Laboratoire de

l'Informatique du Parallélisme, July 2002

[9] Ralf Gruber, Pieter Volgers, Alessandro De Vita,

Massimiliano Stengel and Trach-Minh Tran,

“Parameterisation to tailor commodity clusters to

applications”, Future Generation Computer Systems,

Volume 19, Issue 1, January 2003, Pages 111-120

[10] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna,

“Analysis of High-performance Floating-point Arithmetic on

FPGAs”, In Proceedings of the 18th International Parallel

and Distributed Processing Symposium (IPDPS’04), pages

149-156, April 2004.

[11] http://www.netlib.org/blas

[12] http://math-atlas.sourceforge.net/

[13] http://www.openfpga.org

