
 1

Mapping Sparse Matrix-Vector Multiplication on FPGAs

Junqing Sun1, Gregory Peterson1, Olaf Storaasli2
University of Tennessee, Knoxville1

Oak Ridge National Laboratory2

[jsun5, gdp]@utk.edu1, Olaf@ornl.gov2

Abstract

Higher peak performance on Field Programmable
Gate Arrays (FPGAs) than on microprocessors was
shown for sparse matrix vector multiplication (SpMxV)
accelerator designs. However due to the frequent
memory movement in SpMxV, system performance is
heavily affected by memory bandwidth and overheads
in real applications. In this paper, we introduce an
innovative SpMxV Solver, designed for FPGAs, SSF.
Besides high computational throughput, system per-
formance is optimized by minimizing and overlapping
I/O operations, reducing initialization time and over-
head, and increasing scalability. The potential of using
mixed (64-bit, 32-bit) data formats to increase system
performance is also explored. SSF accepts any matrix
size and easily adapts to different data formats. SSF
minimizes resource costs and uses concise control
logic by taking advantage of the data flow via innova-
tive floating point accumulation logic. To analyze the
performance, a performance model is defined for
SpMxV on FPGAs. Compared to microprocessors, SSF
has speedups up to 20x and depends less on the spar-
sity structure.

Keywords
FPGA, Performance, Sparse Matrix

1. Introduction

Sparse matrix-vector multiplication (SpMxV),

Axy = , is one of the most important computational

kernels in scientific computing, such as iterative linear
equation solvers, least square and eigenvalue solvers
[1]. To save storage and computational resources, usu-
ally only nonzero elements are stored and computed.
Pointers are necessary to store the sparsity structure,
but degrades memory operation efficiency since the
vector ‘ x ’ is addressed by the pointers during compu-
tation. Furthermore, pointers require additional load
operations and memory traffic. Despite numerous ef-
forts to improve SpMxV performance on microproces-

sors [2]-[4], these algorithms rely heavily on the matrix
sparsity structures and the computer architecture,
resulting in degraded performance on irregular matri-
ces.

FPGAs show great potential in Reconfigurable
Computing because of their intrinsic parallelism, pipe-
line ability, and flexible architecture. With their rapid
increase in gate capacity and frequency, FPGAs over-
come microprocessors on both integer and floating
point operations [5]. Many computational intensive
algorithms achieve significant speedup on FPGAs
when the I/O bandwidth requirement is low [6], [7],
[21]-[26]. Application of reconfigurable computing
now depends on effective system integration to effec-
tively utilize these powerful accelerators to improve the
overall performance. Although the results for one
FPGA chip are promising, overall performance is often
limited by the I/O bandwidth [8]. To efficiently inte-
grate FPGA accelerators into a balanced computing
system remains an open problem [9].

Several FPGA designs for SpMxV have been re-
ported before. Zhuo and Prasanna designed an adder-
tree-based SpMxV implementation for double preci-
sion floating point that accepts any size matrices in
general CRS format. ElGindy and Shue proposed
SpMxV on FPGA for fixed point data [18]. DeLorim-
ier and DeHon arranged the PEs in a bidirectional ring

to compute the equation xAy i= , where A is a square

matrix while i is an integer. The design they proposed
reduces the I/O bandwidth requirement greatly by shar-
ing the results between PEs. Because local memories
are used to store the matrix and intermediate results,
the matrix size is limited by the on-chip memory [11].
El-kurdi et al proposed stream-through architecture for
finite element method matrices [12].

Because of its importance in scientific computing,
we plan to develop FPGA libraries for Basic Linear
Algebra Subprograms (BLAS). The designs will target
the Cray XD-1 and XT-4 machines at the Oak Ridge
National Lab (ORNL). To the best of our knowledge,
the design in [10] reports the highest performance for
single cores and minimum I/O requirements for

 2

SpMxV on FPGAs. However, a reduction circuit is
used in their design that needs to be changed according
to different matrix parameters [10].

In this paper, we introduce an innovative SpMxV de-
sign for FPGAs. Because the hardware does not need
to change for different matrices, the initialization time
is minimized and the system integration is simplified.
We reduce the I/O operations for our design by modi-
fying the traditional Block Compressed Row Storage
(BCRS) format. Due to the simpler control logic, our
design has a better scalability than previous work.

Because floating point adders are usually deeply
pipelined to achieve high frequency, accumulating
floating point data is normally difficult in digital de-
sign. We propose an accumulation circuit for SpMxV.
By taking the advantage of the data flow, we design an
innovative summation circuit which has low resource
requirements and simple control logic.

Long size integer or floating point data are normally
used for accuracy but also require more computational
resources and I/O bandwidth, and result in longer la-
tency. Potentially, mixed size data can be used to meet
the required accuracy while achieving higher perform-
ance [13]. We explore this idea in SpMxV. Our pre-
liminary results prove its significant savings in on-chip
resources and I/O bandwidth while achieving higher
frequency.

This paper also built a performance model for recon-
figurable SpMxV accelerators. We discuss the impact
on SpMxV performance from different factors, such as
computational ability, I/O bandwidth, initialization
time, synchronization time and other overheads. Our
model shows that the performance of SpMxV on
FPGAs depends on two primary factors: I/O bandwidth
and computational ability, expressed as “chip capacity
times frequency”.

This rest of this paper is organized as follows.
Firstly, we introduce the SpMxV algorithm and storage
format used in our design. Section 3 introduces our
basic design and application frameworks. The design
for floating point is discussed in section 4. Implementa-
tion results are also given and compared to previous
work. Section 5 discusses possible improvements of
our design. In section 6, we describe a performance
model, which is used to optimize the design parameters
and estimate performance. Our performance is also
compared to both previous designs and optimized algo-
rithms on microprocessors.

2. SpMxV on FPGAs

The storage format plays an important role in

SpMxV and affects the performance of optimization
algorithms. We use the common format, Compressed

Row Storage (CRS), for our FPGA design [14]. Our
design requires the multiplicand vector x be stored in
the FPGA local memory. For large problems, where x
cannot be accommodated in a FPGA chip, we use
block matrix multiplication algorithm. In contrast to
traditional BCRS Storage, our matrix storage format is
optimized for FPGA accelerators. As explained later,
this format is compatible with algorithms using BCRS
but reduces requirements on both I/O bandwidth and
computational resources.

In general, the SpMxV computation Axy = is de-

fined as:

∑ =
= N

j jjii xay
0 , , (Mi <≤0) (1)

Where A is an NM × matrix, while y and x are

1×M and 1×N vectors, respectively. For efficiency,
most sparse matrix algorithms and storage formats only
operate on nonzero elements. For each nonzero ele-
ment, there are two floating point operations (one add
and one multiply). By convention, we assume A has

nzn nonzero elements. All the elements of A and have

to be moved into the FPGAs, while computed results
for y have to be moved out of the FPGAs. Because of

the pointers used in storage formats, the indices for
matrix A also need to be moved into FPGAs’ local
memories. Suppose there are pn pointers needed. The

total I/O requirement is at least:
MNnnn pnzIO +++= . (2)

Because of the loss of locality and limited memory
size, matrix and vector data may have to be moved
multiple times on traditional microprocessor-memory
architectures. In the FPGA SpMxV design, I/O time is
hidden by overlapping with computations to reduce the
overall time. The time used to preload the data onto
FPGAs is denoted as InitT , which also includes hard-

ware initialization and data formatting. We denote synT

as the time for FPGAs to synchronize with hosts, and

overheadT for other overheads. The overall time spent

on FPGA accelerators is thus

overheadsyninitIOcomp TTTTTT +++=),max((3)

In equation (3), computation time compT is the only

part doing real matrix multiplication operations. Unfor-
tunately, SpMxV FPGA cores also have tremendous
I/O demands. To improve the overall performance, we
need to overlap the I/O operations with computations
as much as possible. At the same time, synchronization
time and overheads needs to be minimized.

 3

2.1 Sparse matrix storage format

The CRS format makes no assumptions about the

sparsity structure of the matrix and has no unnecessary
elements stored [14]. In the CRS format, 3 vectors are
needed: the val vector stores subsequent nonzeros of
the matrix in row order; the integer vector col stores
the column indices of the elements in the val vector;
while the integer vector len stores the number of non-
zero elements of each row in the original matrix. As an
example, consider the matrix A defined by

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

−

=

06085

00090

00001

60010

00302

A

The CRS format for this matrix is then specified by
the arrays given below:

Val: 2, -3, -1, 6, 1, 9, 5, 8, 6

Col: 0, 2, 1, 4, 0, 1, 0, 1, 3

Len: 2, 2, 1, 1,3

In our design, the maximum matrix size that can be
fit into FPGA chips is restricted by the on-chip mem-
ory size. Big matrices need to be divided into sub-
matrices. Our matrix division format is shown in Figure
1. The matrix is divided into stripes in row’s direction.
Each stripe is further divided to sub-matrices (shown in
dashed lines). The sub-matrices are computed in the
FPGAs, and those having only zeros are neither stored
nor computed. We refer to this format as Row Blocked
CRS (RBCRS).

Figure 1: Row Blocked CRS (RBCRS)

During the computation, sub-matrices in the same
stripe are assigned to the same FPGA accelerator. Note
that the elements required from vector x will differ for
each stripe based on the sparsity pattern. The vector x
is kept in the FPGA off-chip memory, and part of it
(jx) is loaded before computing jij xA . Note that the

result jij xA is not sent out after being computed, but is

stored in the FPGA and added with the result from the
next sub-matrix vector multiplication in the same
stripe. For example, the result of 020 xA × will be

stored in the FPGA to add with the result of 121 xA × .

After all the matrices in a row are computed, the result

2y is read out. This approach saves I/O bandwidth and

computational resources.

3. Framework and basic design

This section introduces our basic design and the

framework when used in software applications. The
basic design discussed here is efficient for integers
rather floating points. The reason is that the integer
adders have one-clock-cycle latency, and therefore the
accumulation circuit can be built with a simpler pipe-
lined structure. The summation circuit can also be sim-
ply implemented by using an adder. This basic design
could be adopted to support floating points, but at a
lower clock frequency. The design for deeply pipelined
floating point operators is more complicated because of
the read after write hazard discussed in the next sec-
tion.

3.1 Basic design and interfaces

Figure 2 shows the basic design of our SpMxV

Solver designed for FPGAs (SSF) core and the frame-
work for applications. The application program stores
the matrix in RBCRS format. The matrix manager
feeds sub-matrices to the SpMxV core in CRS format
and reads back the result iy . The application program

may read back the iy values from different FPGAs to

determine the result y .

Figure 2: Data Path and Framework of SpMxV Design

In our design, each PE is a deep pipeline consisting
of a multiplier, adder, and result adder. FIFO1 is used
as a buffer for intermediate results. The values for
“val” and “col” are synchronously imported into the
PE. The multiplicand vector jx is preloaded into the

FPGA and addressed by “col”. Because there is a one
clock cycle latency to read data from Block RAM
(BRAM), a buffer is inserted for “val” before the mul-
tipliers. The input signals are illustrated in Figure 3.
Following the “col” values for each row, one clock

y0

y1

y2

x

A00

A10

0

0

A20

A11

0

0

0

A21

 4

cycle is inserted for its Row ID in the sub-matrix. The
Row IDs are stored into FIFO2 and used to address the
Result BRAM. Zeros are inserted when there is a stall
signal or when waiting for the I/O to feed the next
rows. The signal “valid” is set when “val” and “col”
data are being imported. It is also used to control the
components: multiplier, adder, FIFO1, and FIFO2.

Figure 3: Signals for Processing Elements (PEs)

For a row with nzn nonzero elements, the PE com-

putes nzn values and stores the results into FIFO1. The

summation circuit adds the results from the PEs with
the data in the result BRAM addressed by data read
from FIFO2. Note that the data in the result BRAM are
from previous sub-matrices.

To maximally utilize the data input bandwidth, all
the components in the PEs are synchronized to the
pipelined data flow by using the signal “valid”. Some
intermediate signals are produced to indicate when the
components have valid inputs and outputs. Most of
these control signals can be generated by adding ap-
propriate delays to the signal “valid”. For example, the
“input valid” signal for a multiplier is produced by
adding one clock cycle delay to the signal “valid” be-
cause of the one clock cycle delay in the data flow. The
“write enable” signal for FIFO1 is set for one clock
cycle when the result for one row is accumulated. The
“stall” signal is set if FIFO1 is close to full. When a
stall is issued, zeroes are inserted as inputs while the
“valid” signal does not change. If a row is being im-
ported, the multipliers and accumulators operate on
inserted zeros and will have no affect on the results.
Note that the data already in the pipelines of multipliers
and ACC circuits still need to be computed and stored
into FIFO1. Therefore, FIFO1 needs to have certain
free space when a stall signal is issued. The size of the
free space should be bigger than half of the total pipe-
line stages of an adder and a multiplier.

The Result Controller checks the “empty” signal of
all the FIFOs. If the FIFO is not empty, the result will
be read out and added to the corresponding value in
Result BRAM. The row ID is read out at the same time
as the data address. The purpose of using the adder is
to sum the results from all sub-matrices in the same
stripe as explained in section 2.1. The result BRAM
will be read and cleared when all the sub-matrices in
the same stripe are computed.

4. Complete design

4.1 Pipelined accumulation circuit

Pipelined floating point operators can be used to im-

prove the frequency of our design. However, the accu-
mulator cannot be simply built as in the basic design
because of read after write data hazards. The dataflow
for a 5 stage pipelined floating point adder is shown in
Figure 4. The hashed blocks are inserted zeros, which
come when the valid signal is zero (invalid). The sec-
ond row is the outputs when the output pin of the float-
ing point adder is connected to one of the input pins.
There are three problems in this circuit.
1. The output is not accumulated into a single value

as in the integer design. For example, the first row
has 6 numbers with a summation of 21. The circuit
gives 5 outputs (2, 3, 4, 5, and 7).

2. The data is added to the output of previous rows.
For example, 8, 9 and 10 are added to 3, 4 and 7.

3. To solve the first problem, we can use 5 registers
to store the last 5 outputs of each row. However,
these registers will have results from previous
rows when the current row is short. For example, if
5 registers are used to store the outputs from the
second row, the data should be captured once 13
(the correct output is 9) comes out. However, 5, 7
and 2 are also stored.

Figure 4: Data Flow for Pipelined ACC Circuit

To solve the data hazards mentioned above, we de-
sign an ACC circuit with a pipelined floating point
adder. One of the inputs, (a), is connected to the output
of multiplier and works as the input for ACC circuit.
The last 5 outputs of the adder are stored in 5 registers
as the output of the ACC circuit. The correct outputs
from our design are also in Figure 4, where the blocks
in grey are data stored in registers. For example, 8 and
9 are stored in two registers as the output of 8 and 9 in
the first line. The other 3 registers have just zeros.

4.2 Adder tree

For pipelined adders with L clock cycle latency, L

outputs will be stored into FIFO1 to add with the data
in the result BRAM. One possible approach for this
problem is to add these L outputs by an adder tree.
Suppose L is equal to 4, we need to add 4 data from
the FIFO and one value from the result BRAM. For
these 5 inputs, an adder tree with 3 levels and 4 adders
are needed as shown in Figure 5. If the number of inputs

 5

is not a power of two, shifters with latency L can be
used in an adder tree to take the place of adders to save
resources.

Figure 5: Adder Tree Used for Pipelined Adders

For our design with double precision data, 12 out-
puts from the FIFO and one data from the result
BRAM need to be added. We use 13 floating point
adders to build the adder tree, which costs 25% of the
total slices of a Xilinx XC2VP70 FPGA. The data flow
of the adder tree used in our design in shown in Figure
6. The rectangles represent data. The numbers in rec-
tangles are the clock cycles when that data is available.
The dashed line is a FIFO with a latency of 24 clock
cycles. The final result comes out 48 clock cycles after
the inputs are available, so it is very important to cap-
ture the output at the right clock cycle. We input the
row ID and write enable signal to two shifters with
depth of 48 at clock 0. They will come out with the
result at clock 48 to be used as the address and write
enable signal for the result BRAM.

Figure 6: Data Flow for Adder Tree

4.3 Reduced summation circuit

Because of the large adder tree, we propose a re-

duced summation circuit as shown in Figure 7. The idea
is to reduce the number of adders by importing just two
data each clock cycle. The data coming out first is
stored in a buffer and computed with the next. By in-
serting a certain number of buffers between the adders
and taking advantage of the data flow, we designed a
summation circuit for this function without control
logic. For our double precision design, 4 adders and 7
buffers are used in total. 16 registers are used to store
the data from the FIFO, the result Block RAM, and 3
zeros to fill the pipeline for correctness. This will be
explained later in the data flow.

Figure 7: Reduced Summation Circuit

Figure 8: Data Flow for Summation Circuit

The data flow here is more complicated than in the
adder tree, as shown in Figure 8. The data in a row are
added by the same adder in serial, while buffers are
used to delay the intermediate data for the appropriate
time. For example, the datum on clock 12 should be
added to that on clock 13, so a buffer needs to be
added before adder 1. We can see that the data on
clock cycle 18 does not have a counterpart for the addi-
tion operation. We pad with zeros to obtain the correct
sum. The shaded rectangles are inserted zeros. Figure 8
shows that the final result can be captured 55 clock
cycles after the data is available in the buffer. In our
design, a “Write Enable” signal for the result BRAM is
stored to a shifter with length of 55 at clock 0. When
the “Write Enable” comes out of the shifter, the final
result will also be ready.

The Result Controllers of these two circuits are very
similar. Because of their long latency, the Result Con-
troller uses stream-through architecture. We insert the
row ID and write enable signals to be written into shift-
ers at clock cycle 0. If the three outputs of these two
circuits are connected to corresponding pins of the re-
sult BRAM, the results should be captured automati-
cally. Table 1 compares the summation circuit and ad-
der tree.

Table 1: Comparing Adder Tree and Summation Circuit

Design Adders No. latency

Adder Tree 12 48

Summation Circuit 4 55

4.4 Implementation results and comparison

We implemented SSF design by using Xilinx ISE

and EDK 8.1 [17]. ModelSim and Chipscope are used
for verification and debugging. For mathematic opera-

 6

tions, we use Xilinx IP cores which follow the IEEE
754 standard and that can also be customized [17].
Considering the limited size of the FPGAs, we use a
summation circuit for the floating point design. The
BRAM size for ix , iy are 1000. The adders and mul-

tipliers are provided by Xilinx [17]. To compare our
results with previously reported designs, we target the
Xilinx XC2VP70-7. The characteristics are summa-
rized in Table 2.

Table 2: Characteristics of SpMxV on XC2VP70-7

Design 64 bit Int Single FP Double FP

Achievable
Frequency

175MHz 200MHz 165MHz

Slices 8282(25%) 10528 (31%) 24129 (72%)

BRAMs 36 (10%) 50 (15%) 92 (28%)

MULT18X18 128 (39%) 32 (9%) 128 (39%)

The slice usage and the frequency of our design are
dominated by the mathematic operators, while the ef-
fect from control logic is almost negligible. If high
speed floating point operators are used, the speed of
our design can be improved accordingly. Our design
can easily adapt to different data formats by simply
replacing IP cores. The only change for the control
logic is the latency of operators and interface width,
which are defined as a variable in the VHDL. Our de-
sign is deeply pipelined. Ignoring I/O bandwidth limi-
tations and communication overheads, two floating
point or integer operations (one addition and one mul-
tiplication) can be done per clock cycle by each PE.

Previously reported work describes an implementa-
tion that achieves 2340 MIPS at 28.57 MHz frequency
by using 3 multipliers [18]. However, that design is for
fixed point data. The closest related work is [10],
which develops an adder-tree-based design for double
precision floating point numbers. A reduction circuit is
used in their design to sum up the floating points. Be-
cause the frequency is mostly dependent on the floating
point operations for both designs, the achievable speed
is similar in these two designs if the same mathematical
IP cores are used. When 8 multipliers are utilized, both
designs achieve a peak performance of 16 floating
point operation per clock cycle. Their design uses high
performance floating point cores with clock latencies
of 19 for the adder and 12 for the multiplier. The num-
ber of adders depends on the size of the reduction cir-
cuit, which changes with different matrices. For the test
matrices in [10], the size of reduction circuit is 7. Our
design accepts any input matrices with no hardware
changes required. There is no a priori analysis on the
matrix or extra hardware initialization time needed for
our design. For the tree based design [10], zeros need

to be padded when the number of nonzero in a row is
not a multiple of the number of multipliers. To reduce
the overhead caused by zero padding, [10] uses a tech-
nique called merging. As the PE number increases, the
tree based design will face a choice between high over-
head and complicated control logic [10]. Our design
does not have the zero padding overhead and can scale
very easily.

5. Potential performance

5.1 Mixed data format

One important advantage of FPGAs over microproc-

essors is that they allow customized data formats. As
Table 2 shows, different data formats result in different
frequency and resource consumption. The bus traffic
could also be reduced by using smaller size data.

We try to increase the performance of SpMxV by
applying shorter data formats as much as we can. The
potential impact on performance improvement is ex-
plained here by a simple example. Suppose 32 bit inte-
gers provide enough resolution for the matrices and
vectors given. However, it is possible that the output
data are bigger, and 64 bit integers are needed. Instead
of using 64 bit data for both input and output data, we
can use two different data formats: 32 bits for input and
64 bits for the output. Table 3 shows that a design with
mixed data formats has higher frequency, lower la-
tency, and less I/O bandwidth and resources.
Table 3: 64 bit and 32/64 bit Mixed Integer Comparison

Design 32/64 bit Mixed 64 bit

Achievable Frequency 183Mhz 175Mhz

Slices 3475 (10%) 8282 (25%)

BRAMs 20 (6%) 36 (10%)

MULT18X18 32 (9%) 128 (39%)

Multiplier Latency 4 cycles 6 cycles

Required I/O Bandwidth 8.8GB/s 14GB/s

5.2 Reducing Summation Circuit Latency

In our design, the summation circuit is shared by all

the PEs to add the data from the FIFOs and the result
BRAM. When the design scales up, care must be taken
that it will not become the bottleneck of the whole
pipeline. That is, the time the result adder uses to
transport data should be overlapped by communication
or computation time. We analyze this potential bottle-
neck problem by considering the reduced summation
circuit because it takes the most time (8 clock cycles).
We compare the time the I/O and the summation circuit

 7

needs to transport data when each PE computes just
one row. For a design with 8 PEs, the time needed by
the result adder to transport data is 6488 =× clock
cycles.

The communication time is decided by the I/O band-
width and matrix sparsity. On the Cray XD-1, the peak
speed for the bus between FPGA chip and QDR II
RAM is 1.6GB/s in each direction [15]. Suppose the
matrix sparsity is 1% and sub-matrix size is 1000 by
1000. Then on average, there are 10 double precision
floating point data (8 Bytes) for val and 10 integer in-
dex data (2 Bytes) for each col, that is 100 Bytes per
column. Even assuming the I/O bandwidth can be fully
utilized with no other communication overheads, the
communication time for the double precision floating
point design is at least 836.1/1658100 =×× GMhz clock
cycles for 8 engines. The overhead for 8 PEs results in
an extra 86.1/165810 =×× GMhz clock cycles for a
total of 91 clock cycles.

If more PEs are implemented, the time spent by both
the result adder and I/O operations increases linearly.
Therefore, the I/O is still the bottleneck instead of the
adder tree under the conditions above. If the sub-matrix
size increases, the time spent on I/O will increase ac-
cordingly. Therefore, the summation circuit has less
possibility to become the bottleneck. In cases that
faster I/Os are used, the time for I/O will be smaller
and may not overlap the time for the summation circuit.
Multiple summation circuits can work in parallel to
increase the throughput until it is overlapped by the
communication or computation time.

6. Performance

6.1 Performance model for SpMxV on FPGAs

In our design, the time for moving “val” and “col”

into FPGAs is overlapped with the computation time.
When a sub-matrix is being computed, the multiplicand
vector ix for the next matrices can be loaded. The I/O

time for ix (1≥i) can be overlapped, so it is not in-

cluded here. The time for initialization and synchroni-
zation should also be counted, so the total time spent
by SpMxV core is

overheadsyninitIOcomp TTTTTT +++=),max((4)

In equation 4, the real computational work only con-
tributes compT to the total time. To increase overall

performance, we need to overlap the communication
time and reduce the initialization and synchronization
time besides reducing compT .

compT is determined by the frequency and number of

computational engines. We assume F floating point
operations are executed per second. The communica-
tion time is limited by the host memory bandwidth and
by the I/O bus speed. Suppose the bandwidth for each

I/O bus is IOB and that the matrix A and vector y are

transported by separate I/O buses. To compute a non-
zero element, both its value and pointer have to be
moved into FPGAs. The time spent on the FPGA ac-
celerator is thus

overheadsyninit

IO

nznz

TTT

B

widthcolwidthvaln

F

n
T

+++

+×
=)

)(
,

2
max(

**

 (5)

Where *
nzn is the number of total nonzero elements for

all sub-matrices assigned to an FPGA accelerator.
To minimize equation 4 and 5, we have discussed

several approaches to accelerate the computation: in-
creasing the frequency and number of PEs to improve
F ; optimizing the matrix mapping to reduce I/O op-
erations; making the design general to all different ma-
trices so no hardware initialization or preparation on
inputs is required; designing a simple interface which
only needs a start signal and matrix/vector address; and
not requiring any participation of the host during the
computation.

We still need to discuss the block RAM size. The ef-
fect from the block size of ix is a double edged sword.

The overheads in our design mainly come from the one
clock cycle control signal between rows. Therefore
increasing the block size of ix reduces the ratio of

overheads by having more nonzeros each row. How-
ever, it also results in a longer initialization time for
loading 0x . The result BRAM size determines the

number of rows of sub-matrices, which affects the
number of nonzero elements of sub-matrices. Under
certain sparsity, the I/O time to move sub vectors jx

can be overlapped with a big enough result BRAM
size.

For very large matrices, many sub-matrices will be
assigned to a particular FPGA. initT in our design

comes from loading ox and can be ignored in that

case. The synchronization time with hosts is also just a
function call, so we can also neglect synT for simplic-

ity. For the double precision design, the data width is 8
Bytes and index width is 2 Bytes. So equation 5 be-
comes:

)
10

,
2

max(
**

B

n

F

n
T nznz< (6)

 8

If unlimited resources are assumed, F is also infinite.
Then the achievable MFLOPS performance is limited
by B.

5/
/10

22
B

Bn

n

T

n
MFLOPS

z

zz =<= (7)

The floating point operations F take advantage of
both the frequency and capacity of FPGAs and result in
4 times improvement every two years [5]. However to
build a balanced system, the number of PEs is limited
not just by chip capacity but also I/O bandwidth. For
double precision floating point discussed before, the
maximum number limited by I/O bandwidth is:

PEs
frequency

B

frequency

B

102

5/ =≤ (8)

6.2 Comparison with previous work

To the best of our knowledge, the work in [10] re-

ports the highest previous performance for SpMxV on
FPGAs. Given the same size design as shown in Table
2, we have similar peak performance and I/O require-
ments. However, our design does not need to change
the hardware for different matrices, so the initialization
and synchronization time is shorter. We also do not
suffer from either high overheads or very complicated
control logic due to zero padding when the system
scales. For large matrices, the results from the design
[10] are just for sub-matrices and needs to be summed
up for the final result. Our design allows saving the
immediate result in FPGA and computes the final result
without this additional I/O operation requirement.

Table 4: Test Matrices [20]

ID Matrix Area Size (N) Nonzeros (Nnz) Sparsity (%)

1 Crystk02 FEM Crystal 13965 968583 0.5

2 Crystk03 FEM Crystal 24695 1751178 0.29

3 stat96v1 linear programming 5995 x 197472 588798 0.05

4 nasasrb Structure analysis 54870 2677324 0.09

5 raefsky4 Buckling problem 19779 1328611 0.34

6 ex11 3D steady flow 16614 1096948 0.4

7 rim FEM fluid mechanics 22560 1014951 0.2

8 goodwin FEM fluid mechanics 7320 324784 0.61

9 dbic1 linear programming 43200 x 226317 1081843 0.01

10 rail4284 Railways 4284 × 1092610 11279748 0.24

6.3 Comparison with microprocessors

In our design, the overhead mainly comes from the
one clock cycle between continuous rows. It is decided
by the total number of sub rows. The initialization time
is for preloading sub vector 0X . Both of them can be

exactly counted in simulation. The synchronization
time is affected by the interface and API between host
and FPGA chip. Our design needs few synchronization
signals, such as “start”, “complete”, and start address
of matrices/vectors. The synchronization time is ne-
glected at this point. We test our design on matrices
from different fields as shown in Table 4. All these ma-
trices come from Tim Davis’ Matrix Collection [20].
They are roughly ordered by increasing irregularity.
The percentage of overheads in the test matrices is
shown in Figure 9.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1 2 3 4 5 6 7 8 9 10
Test Matrices

O
ve

rh
ea

d
 P

er
ce

n
ta

g
e

Figure 9: Overhead Percentage

We compare our design with microprocessors. Our
design utilizes 8 PEs at 165 MHz frequency. The re-
quired memory bandwidth is 13.2 GB/s, which can be
provided by current technology. For example, Ben-
BLUE-V4 provides 16GB/s memory bandwidth [27].
We take a conservative performance estimation by

 9

deducting 40% off the peak performance for control
overhead of the high speed memory interface [5][10].
The achievable percentage of performance is shown in
Figure 10.

78.00%

80.00%

82.00%
84.00%

86.00%

88.00%

90.00%

92.00%

94.00%
96.00%

98.00%

100.00%

1 2 3 4 5 6 7 8 9 10
Test Matrices

P
er

ce
nt

ag
e

of
 A

ch
ie

va
bl

e
P

er
fo

rm
an

ce

Figure 10: Percentage of Achievable Performance

For software performance on microprocessors, we
use OSKI, which has achieved significant speedups by
using techniques such as register and cache blocking
[19]. The test machine is a dual 2.8GHz Intel Pentium
4 with 16KB L1, 512KB L2 Cache and 1GB memory.

The speedup of our design over the 2.8 GHz Pen-
tium 4 is shown in Figure 11. Our design performs bet-
ter then the Pentium 4 on matrices with irregular spar-
sity structures. This is because the overhead of our
design depends on the number of nonzero elements per
row of sub-matrices but is not affected by their sparsity
structure.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Test Matrices

S
p

ee
u

p
 o

ve
r

P
4

2.
8

G
H

z

Figure 11: Speed Up over 2.8 GHz Pentium 4

7. Conclusions

We present an innovative SpMxV FPGA design with

overall system performance addressed. First, we intro-
duce an improvement for traditional BCRS, which re-
sults in lower I/O requirements and less overhead. Sec-
ondly, we propose an efficient multiplication accumu-
lation circuit for pipelined floating points by taking
advantage of the data flow. Compared to previous
work, our design has high peak performance, low
memory requirements, good scalability and does not

need to modify the hardware for different matrices.
Another contribution of this paper is the performance
model for SpMxV on FPGAs, which considers the fac-
tors of computational ability, I/O, initialization time,
synchronization time and overheads. Furthermore, we
discuss the impact on performance from all these fac-
tors. The potential of using mixed data format for
SpMxV is also explored. Our preliminary results show
that, it results in higher frequency, lower I/O bandwidth
and less resource requirements. Our future work in-
cludes completing high performance BLAS design on
FPGAs and performance analysis.

8. Acknowledgement

This project is supported by the University of Ten-

nessee Science Alliance and the ORNL Laboratory
Director’s Research and Development program. We
also would like to thank Richard Barrett of ORNL for
useful discussion on sparse matrices.

9. References

[1] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
1992.

[2] Storaasli. “Performance of NASA Equation
Solvers on Computational Mechanics Applications”,
34th AIAA Structures, Structural Dynamics and Mate-
rials Conference, April, 1996.

[3] Pinar and M. T. Heath. “Improving Performance
of Sparse Matrix-Vector Multiplication”. Supercom-
puting, November 1999.

[4] E.-J. Im, K. A. Yelick. “Optimizing Sparse Matrix
Computations for Register Reuse in Sparsity”. Interna-
tional Conference on Computational Science, 2001.

[5] K. D. Underwood. “FPGAs vs. CPUs: Trends in
peak floating-point performance”. ACM International
Symposium on Field Programmable Gate Arrays, Feb-
ruary 2004.

[6] Y. Bi, G.D. Peterson, L. Warren, and R. Harrison.
“Hardware Acceleration of Parallel Lagged-Fibonacci
Pseudo Random Number Generation”. ERSA, June
2006.

[7] R. Scrofano and V. K. Prasanna. “Computing
Lennard-Jones Potentials and Forces with Reconfigur-
able Hardware”. ERSA, June 2004.

[8] J.L. Tripp, A.A. Hanson, M. Gokhale, and H.S.
Mortveit. “Partitioning Hardware and Software for

 10

Reconfigurable Supercomputing Applications: A Case
Study”. Supercomputing, November 2005.

[9] K. Underwood, S. Hemmert, and C. Ulmer. “Ar-
chitectures and APIs: Assessing Requirements for De-
livering FPGA Performance to Applications”. Super-
computing, November 2006.

[10] L. Zhuo and V. K. Prasanna. “Sparse matrix-
vector multiplication on FPGAs”. 2005 ACM/SIGDA
13th International Symposium on Field-Programmable
Gate Arrays, pages 63–74, February, 2005.

[11] M. deLorimier and A. DeHon. “Floating-Point
Sparse Matrix-Vector Multiply for FPGAs”. Interna-
tional Symposium on Field Programmable Gate Ar-
rays, February, 2005.

[12] Y. El-kurdi, W. J. Gross, and D. Giannacopou-
los. “Sparse Matrix-Vector Multiplication for Finite
Element Method Matrices on FPGAs”. 2006 IEEE
Symposium on Field-Programmable Custom Comput-
ing Machines, April 2006.

[13] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A.
Buttari, and J. Dongarra. “Exploiting the performance
of 32 bit floating point arithmetic in obtaining 64 bit
accuracy”. Supercomputing, November, 2006.

[14] R. Barrett, Templates for the solution of Linear
Systems: Building Blocks for Iterative methods, 2nd
Edition. SLAM, Philadelphia, PA, 1994.

[15] Cray Inc. www.cray.com

[16] Digilent Inc. www.digilentinc.com

[17] Xilinx Inc. http://www.xilinx.com

[18] H. A. ElGindy, and Y. L. Shue. “On Sparse Ma-
trix-Vector Multiplication with FPGA-based System”.
10th IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, April 2002.

[19] R. Vuduc, J. Demmel, K. Yelick. “OSKI: A
library of automatically tuned sparse matrix kernels”.
SciDAC 2005, Journal of Physics: Conference Series,
June 2005.

[20] T. Davis, University of Florida Sparse Matrix
Collection,
http://www.cise.ufl.edu/research/sparse/matrices, NA
Digest, 92(42), October 16, 1994, NA Digest, 96(28),
July 23, 1996, and NA Digest, 97(23), June 7, 1997.

[21] Storaasli, “Compute Faster without CPUs: Engi-
neering Applications on NASA's FPGA-based Hyper-
computers”, Technical Symposium on Reconfigurable
Computing with FPGAs, Manchester UK, February
2005.

[22] J. Sobieski and O.O. Storaasli. "Computing at
the Speed of Thought," Aerospace America, Oct. 2004,
pp. 35-38.

[23] Storaasli, "Engineering Applications on NASA's
FPGA-based Hypercomputer", MAPLD, September,
2004.

[24] Storaasli, "Computing Faster without CPUs:
Scientific Applications on a Reconfigurable, FPGA-
based Hypercomputer." Military and Aerospace Pro-
grammable Logic Devices (MAPLD) Conference, Sep-
tember, 2003.

[25] Storaasli, R. C. Singleterry, and S. Brown. "Sci-
entific Computations on a NASA Reconfigurable Hy-
percomputer." 5th Military and Aerospace Program-
mable Logic Devices (MAPLD) Conference. Septem-
ber, 2002.

[26] J. Sun, G. Peterson, O.O. Storaasli, “Sparse Ma-
trix-vector Multiplication Design on FPGAs”, FCCM,
April, 2007.

[27] Nallatech Inc. http://www.nallatech.com.

