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Abstract 

Higher peak performance on Field Programmable 
Gate Arrays (FPGAs) than on microprocessors was 
shown for sparse matrix vector multiplication (SpMxV) 
accelerator designs. However due to the frequent 
memory movement in SpMxV, system performance is 
heavily affected by memory bandwidth and overheads 
in real applications. In this paper, we introduce an 
innovative SpMxV Solver, designed for FPGAs, SSF. 
Besides high computational throughput, system per-
formance is optimized by minimizing and overlapping 
I/O operations, reducing initialization time and over-
head, and increasing scalability. The potential of using 
mixed (64-bit, 32-bit) data formats to increase system 
performance is also explored. SSF accepts any matrix 
size and easily adapts to different data formats. SSF 
minimizes resource costs and uses concise control 
logic by taking advantage of the data flow via innova-
tive floating point accumulation logic. To analyze the 
performance, a performance model is defined for 
SpMxV on FPGAs. Compared to microprocessors, SSF 
has speedups up to 20x and depends less on the spar-
sity structure. 
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1. Introduction 
 
Sparse matrix-vector multiplication (SpMxV), 

Axy = , is one of the most important computational 

kernels in scientific computing, such as iterative linear 
equation solvers, least square and eigenvalue solvers 
[1]. To save storage and computational resources, usu-
ally only nonzero elements are stored and computed. 
Pointers are necessary to store the sparsity structure, 
but degrades memory operation efficiency since the 
vector ‘ x ’ is addressed by the pointers during compu-
tation. Furthermore, pointers require additional load 
operations and memory traffic. Despite numerous ef-
forts to improve SpMxV performance on microproces-

sors [2]-[4], these algorithms rely heavily on the matrix 
sparsity structures and the computer architecture, 
resulting in degraded performance on irregular matri-
ces. 

FPGAs show great potential in Reconfigurable 
Computing because of their intrinsic parallelism, pipe-
line ability, and flexible architecture. With their rapid 
increase in gate capacity and frequency, FPGAs over-
come microprocessors on both integer and floating 
point operations [5]. Many computational intensive 
algorithms achieve significant speedup on FPGAs 
when the I/O bandwidth requirement is low [6], [7], 
[21]-[26]. Application of reconfigurable computing 
now depends on effective system integration to effec-
tively utilize these powerful accelerators to improve the 
overall performance. Although the results for one 
FPGA chip are promising, overall performance is often 
limited by the I/O bandwidth [8]. To efficiently inte-
grate FPGA accelerators into a balanced computing 
system remains an open problem [9].  

Several FPGA designs for SpMxV have been re-
ported before. Zhuo and Prasanna designed an adder-
tree-based SpMxV implementation for double preci-
sion floating point that accepts any size matrices in 
general CRS format. ElGindy and Shue proposed 
SpMxV on FPGA for fixed point data [18]. DeLorim-
ier and DeHon arranged the PEs in a bidirectional ring 

to compute the equation xAy i= , where A  is a square 

matrix while i  is an integer. The design they proposed 
reduces the I/O bandwidth requirement greatly by shar-
ing the results between PEs. Because local memories 
are used to store the matrix and intermediate results, 
the matrix size is limited by the on-chip memory [11]. 
El-kurdi et al proposed stream-through architecture for 
finite element method matrices [12]. 

Because of its importance in scientific computing, 
we plan to develop FPGA libraries for Basic Linear 
Algebra Subprograms (BLAS). The designs will target 
the Cray XD-1 and XT-4 machines at the Oak Ridge 
National Lab (ORNL). To the best of our knowledge, 
the design in [10] reports the highest performance for 
single cores and minimum I/O requirements for 
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SpMxV on FPGAs. However, a reduction circuit is 
used in their design that needs to be changed according 
to different matrix parameters [10].  

In this paper, we introduce an innovative SpMxV de-
sign for FPGAs. Because the hardware does not need 
to change for different matrices, the initialization time 
is minimized and the system integration is simplified. 
We reduce the I/O operations for our design by modi-
fying the traditional Block Compressed Row Storage 
(BCRS) format. Due to the simpler control logic, our 
design has a better scalability than previous work.  

Because floating point adders are usually deeply 
pipelined to achieve high frequency, accumulating 
floating point data is normally difficult in digital de-
sign. We propose an accumulation circuit for SpMxV. 
By taking the advantage of the data flow, we design an 
innovative summation circuit which has low resource 
requirements and simple control logic.  

Long size integer or floating point data are normally 
used for accuracy but also require more computational 
resources and I/O bandwidth, and result in longer la-
tency. Potentially, mixed size data can be used to meet 
the required accuracy while achieving higher perform-
ance [13]. We explore this idea in SpMxV. Our pre-
liminary results prove its significant savings in on-chip 
resources and I/O bandwidth while achieving higher 
frequency. 

This paper also built a performance model for recon-
figurable SpMxV accelerators. We discuss the impact 
on SpMxV performance from different factors, such as 
computational ability, I/O bandwidth, initialization 
time, synchronization time and other overheads. Our 
model shows that the performance of SpMxV on 
FPGAs depends on two primary factors: I/O bandwidth 
and computational ability, expressed as “chip capacity 
times frequency”. 

This rest of this paper is organized as follows. 
Firstly, we introduce the SpMxV algorithm and storage 
format used in our design. Section 3 introduces our 
basic design and application frameworks. The design 
for floating point is discussed in section 4. Implementa-
tion results are also given and compared to previous 
work. Section 5 discusses possible improvements of 
our design. In section 6, we describe a performance 
model, which is used to optimize the design parameters 
and estimate performance. Our performance is also 
compared to both previous designs and optimized algo-
rithms on microprocessors.   

 

2. SpMxV on FPGAs 
 
The storage format plays an important role in 

SpMxV and affects the performance of optimization 
algorithms. We use the common format, Compressed 

Row Storage (CRS), for our FPGA design [14]. Our 
design requires the multiplicand vector x be stored in 
the FPGA local memory.  For large problems, where x 
cannot be accommodated in a FPGA chip, we use 
block matrix multiplication algorithm. In contrast to 
traditional BCRS Storage, our matrix storage format is 
optimized for FPGA accelerators. As explained later, 
this format is compatible with algorithms using BCRS 
but reduces requirements on both I/O bandwidth and 
computational resources. 

In general, the SpMxV computation Axy =  is de-

fined as: 

∑ =
= N

j jjii xay
0 , , ( Mi <≤0 )   (1) 

Where A is an NM ×  matrix, while y  and x  are 

1×M  and 1×N vectors, respectively. For efficiency, 
most sparse matrix algorithms and storage formats only 
operate on nonzero elements. For each nonzero ele-
ment, there are two floating point operations (one add 
and one multiply). By convention, we assume A has 

nzn  nonzero elements. All the elements of A and have 

to be moved into the FPGAs, while computed results 
for y  have to be moved out of the FPGAs. Because of 

the pointers used in storage formats, the indices for 
matrix A also need to be moved into FPGAs’ local 
memories. Suppose there are pn  pointers needed. The 

total I/O requirement is at least: 
MNnnn pnzIO +++= .    (2)   

Because of the loss of locality and limited memory 
size, matrix and vector data may have to be moved 
multiple times on traditional microprocessor-memory 
architectures. In the FPGA SpMxV design, I/O time is 
hidden by overlapping with computations to reduce the 
overall time. The time used to preload the data onto 
FPGAs is denoted as InitT , which also includes hard-

ware initialization and data formatting. We denote synT  

as the time for FPGAs to synchronize with hosts, and 

overheadT  for other overheads. The overall time spent 

on FPGA accelerators is thus 

overheadsyninitIOcomp TTTTTT +++= ),max(      (3) 

In equation (3), computation time compT  is the only 

part doing real matrix multiplication operations. Unfor-
tunately, SpMxV FPGA cores also have tremendous 
I/O demands. To improve the overall performance, we 
need to overlap the I/O operations with computations 
as much as possible. At the same time, synchronization 
time and overheads needs to be minimized. 
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2.1 Sparse matrix storage format 
 
The CRS format makes no assumptions about the 

sparsity structure of the matrix and has no unnecessary 
elements stored [14]. In the CRS format, 3 vectors are 
needed: the val vector stores subsequent nonzeros of 
the matrix in row order; the integer vector col stores 
the column indices of the elements in the val vector; 
while the integer vector len stores the number of non-
zero elements of each row in the original matrix.  As an 
example, consider the matrix A  defined by 
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The CRS format for this matrix is then specified by 
the arrays given below: 

Val:  2, -3, -1, 6, 1, 9, 5, 8, 6 

Col:  0, 2, 1, 4, 0, 1, 0, 1, 3 

Len: 2, 2, 1, 1,3 

In our design, the maximum matrix size that can be 
fit into FPGA chips is restricted by the on-chip mem-
ory size. Big matrices need to be divided into sub-
matrices. Our matrix division format is shown in Figure 
1. The matrix is divided into stripes in row’s direction. 
Each stripe is further divided to sub-matrices (shown in 
dashed lines). The sub-matrices are computed in the 
FPGAs, and those having only zeros are neither stored 
nor computed. We refer to this format as Row Blocked 
CRS (RBCRS). 

 

Figure 1: Row Blocked CRS (RBCRS) 

During the computation, sub-matrices in the same 
stripe are assigned to the same FPGA accelerator. Note 
that the elements required from vector x  will differ for 
each stripe based on the sparsity pattern. The vector x 
is kept in the FPGA off-chip memory, and part of it 
( jx ) is loaded before computing jij xA . Note that the 

result jij xA  is not sent out after being computed, but is 

stored in the FPGA and added with the result from the 
next sub-matrix vector multiplication in the same 
stripe. For example, the result of 020 xA ×  will be 

stored in the FPGA to add with the result of 121 xA × . 

After all the matrices in a row are computed, the result 

2y  is read out. This approach saves I/O bandwidth and 

computational resources.   
 

3. Framework and basic design 
 
This section introduces our basic design and the 

framework when used in software applications. The 
basic design discussed here is efficient for integers 
rather floating points. The reason is that the integer 
adders have one-clock-cycle latency, and therefore the 
accumulation circuit can be built with a simpler pipe-
lined structure. The summation circuit can also be sim-
ply implemented by using an adder. This basic design 
could be adopted to support floating points, but at a 
lower clock frequency. The design for deeply pipelined 
floating point operators is more complicated because of 
the read after write hazard discussed in the next sec-
tion.  

 
3.1 Basic design and interfaces 

 
Figure 2 shows the basic design of our SpMxV 

Solver designed for FPGAs (SSF) core and the frame-
work for applications. The application program stores 
the matrix in RBCRS format. The matrix manager 
feeds sub-matrices to the SpMxV core in CRS format 
and reads back the result iy . The application program 

may read back the iy  values from different FPGAs to 

determine the result y . 

 
Figure 2: Data Path and Framework of SpMxV Design 

In our design, each PE is a deep pipeline consisting 
of a multiplier, adder, and result adder. FIFO1 is used 
as a buffer for intermediate results. The values for 
“val” and “col” are synchronously imported into the 
PE. The multiplicand vector jx  is preloaded into the 

FPGA and addressed by “col”. Because there is a one 
clock cycle latency to read data from Block RAM 
(BRAM), a buffer is inserted for “val” before the mul-
tipliers. The input signals are illustrated in Figure 3. 
Following the “col” values for each row, one clock 
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cycle is inserted for its Row ID in the sub-matrix. The 
Row IDs are stored into FIFO2 and used to address the 
Result BRAM. Zeros are inserted when there is a stall 
signal or when waiting for the I/O to feed the next 
rows. The signal “valid” is set when “val” and “col” 
data are being imported. It is also used to control the 
components: multiplier, adder, FIFO1, and FIFO2.  

Figure 3: Signals for Processing Elements (PEs) 

For a row with nzn  nonzero elements, the PE com-

putes nzn  values and stores the results into FIFO1. The 

summation circuit adds the results from the PEs with 
the data in the result BRAM addressed by data read 
from FIFO2. Note that the data in the result BRAM are 
from previous sub-matrices.  

To maximally utilize the data input bandwidth, all 
the components in the PEs are synchronized to the 
pipelined data flow by using the signal “valid”. Some 
intermediate signals are produced to indicate when the 
components have valid inputs and outputs. Most of 
these control signals can be generated by adding ap-
propriate delays to the signal “valid”. For example, the 
“input valid” signal for a multiplier is produced by 
adding one clock cycle delay to the signal “valid” be-
cause of the one clock cycle delay in the data flow. The 
“write enable” signal for FIFO1 is set for one clock 
cycle when the result for one row is accumulated. The 
“stall” signal is set if FIFO1 is close to full. When a 
stall is issued, zeroes are inserted as inputs while the 
“valid” signal does not change. If a row is being im-
ported, the multipliers and accumulators operate on 
inserted zeros and will have no affect on the results. 
Note that the data already in the pipelines of multipliers 
and ACC circuits still need to be computed and stored 
into FIFO1. Therefore, FIFO1 needs to have certain 
free space when a stall signal is issued. The size of the 
free space should be bigger than half of the total pipe-
line stages of an adder and a multiplier.  

The Result Controller checks the “empty” signal of 
all the FIFOs. If the FIFO is not empty, the result will 
be read out and added to the corresponding value in 
Result BRAM. The row ID is read out at the same time 
as the data address. The purpose of using the adder is 
to sum the results from all sub-matrices in the same 
stripe as explained in section 2.1. The result BRAM 
will be read and cleared when all the sub-matrices in 
the same stripe are computed. 

 

4. Complete design 
 

4.1 Pipelined accumulation circuit 
 
Pipelined floating point operators can be used to im-

prove the frequency of our design. However, the accu-
mulator cannot be simply built as in the basic design 
because of read after write data hazards. The dataflow 
for a 5 stage pipelined floating point adder is shown in 
Figure 4. The hashed blocks are inserted zeros, which 
come when the valid signal is zero (invalid). The sec-
ond row is the outputs when the output pin of the float-
ing point adder is connected to one of the input pins. 
There are three problems in this circuit. 
1. The output is not accumulated into a single value 

as in the integer design. For example, the first row 
has 6 numbers with a summation of 21. The circuit 
gives 5 outputs (2, 3, 4, 5, and 7).  

2.  The data is added to the output of previous rows. 
For example, 8, 9 and 10 are added to 3, 4 and 7.  

3. To solve the first problem, we can use 5 registers 
to store the last 5 outputs of each row. However, 
these registers will have results from previous 
rows when the current row is short. For example, if 
5 registers are used to store the outputs from the 
second row, the data should be captured once 13 
(the correct output is 9) comes out. However, 5, 7 
and 2 are also stored.  

 
Figure 4: Data Flow for Pipelined ACC Circuit 

To solve the data hazards mentioned above, we de-
sign an ACC circuit with a pipelined floating point 
adder. One of the inputs, (a), is connected to the output 
of multiplier and works as the input for ACC circuit. 
The last 5 outputs of the adder are stored in 5 registers 
as the output of the ACC circuit. The correct outputs 
from our design are also in Figure 4, where the blocks 
in grey are data stored in registers. For example, 8 and 
9 are stored in two registers as the output of 8 and 9 in 
the first line. The other 3 registers have just zeros. 
 
4.2 Adder tree  

 
For pipelined adders with L  clock cycle latency, L  

outputs will be stored into FIFO1 to add with the data 
in the result BRAM. One possible approach for this 
problem is to add these L  outputs by an adder tree. 
Suppose L  is equal to 4, we need to add 4 data from 
the FIFO and one value from the result BRAM. For 
these 5 inputs, an adder tree with 3 levels and 4 adders 
are needed as shown in Figure 5. If the number of inputs 
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is not a power of two, shifters with latency L can be 
used in an adder tree to take the place of adders to save 
resources. 

 
Figure 5: Adder Tree Used for Pipelined Adders 

For our design with double precision data, 12 out-
puts from the FIFO and one data from the result 
BRAM need to be added. We use 13 floating point 
adders to build the adder tree, which costs 25% of the 
total slices of a Xilinx XC2VP70 FPGA. The data flow 
of the adder tree used in our design in shown in Figure 
6. The rectangles represent data. The numbers in rec-
tangles are the clock cycles when that data is available. 
The dashed line is a FIFO with a latency of 24 clock 
cycles. The final result comes out 48 clock cycles after 
the inputs are available, so it is very important to cap-
ture the output at the right clock cycle. We input the 
row ID and write enable signal to two shifters with 
depth of 48 at clock 0. They will come out with the 
result at clock 48 to be used as the address and write 
enable signal for the result BRAM.  

 

Figure 6: Data Flow for Adder Tree 

 
4.3 Reduced summation circuit 

 
Because of the large adder tree, we propose a re-

duced summation circuit as shown in Figure 7. The idea 
is to reduce the number of adders by importing just two 
data each clock cycle. The data coming out first is 
stored in a buffer and computed with the next. By in-
serting a certain number of buffers between the adders 
and taking advantage of the data flow, we designed a 
summation circuit for this function without control 
logic. For our double precision design, 4 adders and 7 
buffers are used in total. 16 registers are used to store 
the data from the FIFO, the result Block RAM, and 3 
zeros to fill the pipeline for correctness. This will be 
explained later in the data flow. 

 
Figure 7: Reduced Summation Circuit 

 
Figure 8: Data Flow for Summation Circuit 

The data flow here is more complicated than in the 
adder tree, as shown in Figure 8. The data in a row are 
added by the same adder in serial, while buffers are 
used to delay the intermediate data for the appropriate 
time. For example, the datum on clock 12 should be 
added to that on clock 13, so a buffer needs to be 
added before adder 1. We can see that the data on 
clock cycle 18 does not have a counterpart for the addi-
tion operation. We pad with zeros to obtain the correct 
sum. The shaded rectangles are inserted zeros. Figure 8 
shows that the final result can be captured 55 clock 
cycles after the data is available in the buffer. In our 
design, a “Write Enable” signal for the result BRAM is 
stored to a shifter with length of 55 at clock 0. When 
the “Write Enable” comes out of the shifter, the final 
result will also be ready. 

The Result Controllers of these two circuits are very 
similar. Because of their long latency, the Result Con-
troller uses stream-through architecture. We insert the 
row ID and write enable signals to be written into shift-
ers at clock cycle 0. If the three outputs of these two 
circuits are connected to corresponding pins of the re-
sult BRAM, the results should be captured automati-
cally. Table 1 compares the summation circuit and ad-
der tree. 

 
Table 1: Comparing Adder Tree and Summation Circuit  

Design Adders No. latency 

Adder Tree 12 48 

Summation Circuit 4 55 

 
4.4 Implementation results and comparison 

 
We implemented SSF design by using Xilinx ISE 

and EDK 8.1 [17]. ModelSim and Chipscope are used 
for verification and debugging. For mathematic opera-



 6 

tions, we use Xilinx IP cores which follow the IEEE 
754 standard and that can also be customized [17]. 
Considering the limited size of the FPGAs, we use a 
summation circuit for the floating point design. The 
BRAM size for ix , iy  are 1000. The adders and mul-

tipliers are provided by Xilinx [17]. To compare our 
results with previously reported designs, we target the 
Xilinx XC2VP70-7. The characteristics are summa-
rized in Table 2.  

Table 2: Characteristics of SpMxV on XC2VP70-7 

Design 64 bit Int Single FP Double FP 

Achievable 
Frequency 

175MHz 200MHz 165MHz 

Slices 8282(25%) 10528 (31%) 24129 (72%) 

BRAMs 36 (10%) 50 (15%) 92 (28%) 

MULT18X18 128 (39%) 32 (9%) 128 (39%) 

The slice usage and the frequency of our design are 
dominated by the mathematic operators, while the ef-
fect from control logic is almost negligible. If high 
speed floating point operators are used, the speed of 
our design can be improved accordingly. Our design 
can easily adapt to different data formats by simply 
replacing IP cores. The only change for the control 
logic is the latency of operators and interface width, 
which are defined as a variable in the VHDL. Our de-
sign is deeply pipelined. Ignoring I/O bandwidth limi-
tations and communication overheads, two floating 
point or integer operations (one addition and one mul-
tiplication) can be done per clock cycle by each PE.  

Previously reported work describes an implementa-
tion that achieves 2340 MIPS at 28.57 MHz frequency 
by using 3 multipliers [18]. However, that design is for 
fixed point data. The closest related work is [10], 
which develops an adder-tree-based design for double 
precision floating point numbers. A reduction circuit is 
used in their design to sum up the floating points. Be-
cause the frequency is mostly dependent on the floating 
point operations for both designs, the achievable speed 
is similar in these two designs if the same mathematical 
IP cores are used. When 8 multipliers are utilized, both 
designs achieve a peak performance of 16 floating 
point operation per clock cycle. Their design uses high 
performance floating point cores with clock latencies 
of 19 for the adder and 12 for the multiplier. The num-
ber of adders depends on the size of the reduction cir-
cuit, which changes with different matrices. For the test 
matrices in [10], the size of reduction circuit is 7. Our 
design accepts any input matrices with no hardware 
changes required. There is no a priori analysis on the 
matrix or extra hardware initialization time needed for 
our design. For the tree based design [10], zeros need 

to be padded when the number of nonzero in a row is 
not a multiple of the number of multipliers. To reduce 
the overhead caused by zero padding, [10] uses a tech-
nique called merging. As the PE number increases, the 
tree based design will face a choice between high over-
head and complicated control logic [10]. Our design 
does not have the zero padding overhead and can scale 
very easily.  

 
5. Potential performance 

 

5.1 Mixed data format  
 
One important advantage of FPGAs over microproc-

essors is that they allow customized data formats. As 
Table 2 shows, different data formats result in different 
frequency and resource consumption. The bus traffic 
could also be reduced by using smaller size data.  

We try to increase the performance of SpMxV by 
applying shorter data formats as much as we can. The 
potential impact on performance improvement is ex-
plained here by a simple example. Suppose 32 bit inte-
gers provide enough resolution for the matrices and 
vectors given. However, it is possible that the output 
data are bigger, and 64 bit integers are needed. Instead 
of using 64 bit data for both input and output data, we 
can use two different data formats: 32 bits for input and 
64 bits for the output. Table 3 shows that a design with 
mixed data formats has higher frequency, lower la-
tency, and less I/O bandwidth and resources.  
Table 3: 64 bit and 32/64 bit Mixed Integer Comparison 

Design 32/64 bit Mixed 64 bit 

Achievable Frequency 183Mhz 175Mhz 

Slices 3475 (10%) 8282 (25%) 

BRAMs 20 (6%) 36 (10%) 

MULT18X18 32 (9%) 128 (39%) 

Multiplier Latency 4 cycles 6 cycles 

Required I/O Bandwidth 8.8GB/s 14GB/s 

 
5.2 Reducing Summation Circuit Latency  

 
In our design, the summation circuit is shared by all 

the PEs to add the data from the FIFOs and the result 
BRAM. When the design scales up, care must be taken 
that it will not become the bottleneck of the whole 
pipeline. That is, the time the result adder uses to 
transport data should be overlapped by communication 
or computation time. We analyze this potential bottle-
neck problem by considering the reduced summation 
circuit because it takes the most time (8 clock cycles). 
We compare the time the I/O and the summation circuit 
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needs to transport data when each PE computes just 
one row. For a design with 8 PEs, the time needed by 
the result adder to transport data is 6488 =×  clock 
cycles.  

The communication time is decided by the I/O band-
width and matrix sparsity. On the Cray XD-1, the peak 
speed for the bus between FPGA chip and QDR II 
RAM is 1.6GB/s in each direction [15]. Suppose the 
matrix sparsity is 1% and sub-matrix size is 1000 by 
1000. Then on average, there are 10 double precision 
floating point data (8 Bytes) for val and 10 integer in-
dex data (2 Bytes) for each col, that is 100 Bytes per 
column. Even assuming the I/O bandwidth can be fully 
utilized with no other communication overheads, the 
communication time for the double precision floating 
point design is at least 836.1/1658100 =×× GMhz  clock 
cycles for 8 engines. The overhead for 8 PEs results in 
an extra 86.1/165810 =×× GMhz clock cycles for a 
total of 91 clock cycles.   

If more PEs are implemented, the time spent by both 
the result adder and I/O operations increases linearly. 
Therefore, the I/O is still the bottleneck instead of the 
adder tree under the conditions above. If the sub-matrix 
size increases, the time spent on I/O will increase ac-
cordingly. Therefore, the summation circuit has less 
possibility to become the bottleneck. In cases that 
faster I/Os are used, the time for I/O will be smaller 
and may not overlap the time for the summation circuit. 
Multiple summation circuits can work in parallel to 
increase the throughput until it is overlapped by the 
communication or computation time.  

 

6. Performance  
 

6.1 Performance model for SpMxV on FPGAs  
 
In our design, the time for moving “val” and “col” 

into FPGAs is overlapped with the computation time. 
When a sub-matrix is being computed, the multiplicand 
vector ix  for the next matrices can be loaded. The I/O 

time for ix ( 1≥i ) can be overlapped, so it is not in-

cluded here. The time for initialization and synchroni-
zation should also be counted, so the total time spent 
by SpMxV core is 

overheadsyninitIOcomp TTTTTT +++= ),max(  (4) 

In equation 4, the real computational work only con-
tributes compT  to the total time. To increase overall 

performance, we need to overlap the communication 
time and reduce the initialization and synchronization 
time besides reducing compT .  

compT  is determined by the frequency and number of 

computational engines. We assume F floating point 
operations are executed per second.  The communica-
tion time is limited by the host memory bandwidth and 
by the I/O bus speed. Suppose the bandwidth for each 

I/O bus is IOB  and that the matrix A and vector y are 

transported by separate I/O buses. To compute a non-
zero element, both its value and pointer have to be 
moved into FPGAs. The time spent on the FPGA ac-
celerator is thus 

overheadsyninit

IO

nznz

TTT

B

widthcolwidthvaln

F

n
T

+++

+×
= )

)(
,

2
max(

**

  (5) 

Where *
nzn  is the number of total nonzero elements for 

all sub-matrices assigned to an FPGA accelerator.  
To minimize equation 4 and 5, we have discussed 

several approaches to accelerate the computation: in-
creasing the frequency and number of PEs to improve 
F ; optimizing the matrix mapping to reduce I/O op-
erations; making the design general to all different ma-
trices so no hardware initialization or preparation on 
inputs is required; designing a simple interface which 
only needs a start signal and matrix/vector address; and 
not requiring any participation of the host during the 
computation.  

We still need to discuss the block RAM size. The ef-
fect from the block size of ix  is a double edged sword. 

The overheads in our design mainly come from the one 
clock cycle control signal between rows. Therefore 
increasing the block size of ix  reduces the ratio of 

overheads by having more nonzeros each row. How-
ever, it also results in a longer initialization time for 
loading 0x . The result BRAM size determines the 

number of rows of sub-matrices, which affects the 
number of nonzero elements of sub-matrices. Under 
certain sparsity, the I/O time to move sub vectors jx  

can be overlapped with a big enough result BRAM 
size.  

For very large matrices, many sub-matrices will be 
assigned to a particular FPGA. initT  in our design 

comes from loading ox  and can be ignored in that 

case. The synchronization time with hosts is also just a 
function call, so we can also neglect synT  for simplic-

ity. For the double precision design, the data width is 8 
Bytes and index width is 2 Bytes. So equation 5 be-
comes: 

)
10

,
2

max(
**

B

n

F

n
T nznz<           (6) 
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If unlimited resources are assumed, F is also infinite. 
Then the achievable MFLOPS performance is limited 
by B.  

5/
/10

22
B

Bn

n

T

n
MFLOPS

z

zz =<=  (7) 

The floating point operations F take advantage of 
both the frequency and capacity of FPGAs and result in 
4 times improvement every two years [5]. However to 
build a balanced system, the number of PEs is limited 
not just by chip capacity but also I/O bandwidth. For 
double precision floating point discussed before, the 
maximum number limited by I/O bandwidth is: 

PEs 
frequency

B

frequency

B

102

5/ =≤                  (8) 

 
6.2 Comparison with previous work 

 
To the best of our knowledge, the work in [10] re-

ports the highest previous performance for SpMxV on 
FPGAs. Given the same size design as shown in Table 
2, we have similar peak performance and I/O require-
ments. However, our design does not need to change 
the hardware for different matrices, so the initialization 
and synchronization time is shorter. We also do not 
suffer from either high overheads or very complicated 
control logic due to zero padding when the system 
scales. For large matrices, the results from the design 
[10] are just for sub-matrices and needs to be summed 
up for the final result. Our design allows saving the 
immediate result in FPGA and computes the final result 
without this additional I/O operation requirement.  

Table 4: Test Matrices [20] 

ID Matrix Area Size (N)  Nonzeros (Nnz) Sparsity (%) 

1 Crystk02 FEM Crystal 13965 968583 0.5 

2 Crystk03 FEM Crystal  24695 1751178 0.29 

3 stat96v1 linear programming 5995 x 197472 588798 0.05 

4 nasasrb Structure analysis  54870 2677324 0.09 

5 raefsky4 Buckling problem 19779 1328611 0.34 

6 ex11 3D steady flow  16614 1096948 0.4 

7 rim FEM fluid mechanics  22560 1014951 0.2 

8 goodwin FEM fluid mechanics   7320 324784 0.61 

9 dbic1 linear programming 43200 x 226317 1081843 0.01 

10 rail4284 Railways  4284 × 1092610 11279748 0.24 

6.3 Comparison with microprocessors 
 

In our design, the overhead mainly comes from the 
one clock cycle between continuous rows. It is decided 
by the total number of sub rows. The initialization time 
is for preloading sub vector 0X . Both of them can be 

exactly counted in simulation. The synchronization 
time is affected by the interface and API between host 
and FPGA chip. Our design needs few synchronization 
signals, such as “start”, “complete”, and start address 
of matrices/vectors. The synchronization time is ne-
glected at this point. We test our design on matrices 
from different fields as shown in Table 4. All these ma-
trices come from Tim Davis’ Matrix Collection [20]. 
They are roughly ordered by increasing irregularity. 
The percentage of overheads in the test matrices is 
shown in Figure 9. 
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Figure 9: Overhead Percentage 

We compare our design with microprocessors. Our 
design utilizes 8 PEs at 165 MHz frequency. The re-
quired memory bandwidth is 13.2 GB/s, which can be 
provided by current technology. For example, Ben-
BLUE-V4 provides 16GB/s memory bandwidth [27]. 
We take a conservative performance estimation by 
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deducting 40% off the peak performance for control 
overhead of the high speed memory interface [5][10]. 
The achievable percentage of performance is shown in 
Figure 10.  
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Figure 10: Percentage of Achievable Performance 

For software performance on microprocessors, we 
use OSKI, which has achieved significant speedups by 
using techniques such as register and cache blocking 
[19]. The test machine is a dual 2.8GHz Intel Pentium 
4 with 16KB L1, 512KB L2 Cache and 1GB memory.  

The speedup of our design over the 2.8 GHz Pen-
tium 4 is shown in Figure 11. Our design performs bet-
ter then the Pentium 4 on matrices with irregular spar-
sity structures. This is because the overhead of our 
design depends on the number of nonzero elements per 
row of sub-matrices but is not affected by their sparsity 
structure. 
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Figure 11: Speed Up over 2.8 GHz Pentium 4 

 
7. Conclusions 

 
We present an innovative SpMxV FPGA design with 

overall system performance addressed. First, we intro-
duce an improvement for traditional BCRS, which re-
sults in lower I/O requirements and less overhead. Sec-
ondly, we propose an efficient multiplication accumu-
lation circuit for pipelined floating points by taking 
advantage of the data flow. Compared to previous 
work, our design has high peak performance, low 
memory requirements, good scalability and does not 

need to modify the hardware for different matrices. 
Another contribution of this paper is the performance 
model for SpMxV on FPGAs, which considers the fac-
tors of computational ability, I/O, initialization time, 
synchronization time and overheads. Furthermore, we 
discuss the impact on performance from all these fac-
tors. The potential of using mixed data format for 
SpMxV is also explored. Our preliminary results show 
that, it results in higher frequency, lower I/O bandwidth 
and less resource requirements.  Our future work in-
cludes completing high performance BLAS design on 
FPGAs and performance analysis.  
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