
Implementation of a CORDIC based Double-Precision Exponential
Core on an FPGA

Robin Pottathuparambil Ron Sass
rpottath@uncc.edu rsass@uncc.edu

Reconfigurable Computing Systems Lab
University of North Carolina at Charlotte

Abstract
Many natural processes exhibit exponential decay and,
consequently, computational scientists make extensive
use of e−x in computer simulations. Many transcenden-
tal functions (sine, cosine, tangent, exponentiation, etc)
are readily and efficiently implemented in hardware us-
ing the well known CORDIC algorithm. However, many
current FPGA implementations are either fixed point or
reduced precision floating point (which suffers from a
high average/mean error). These solutions are unac-
ceptable for many computational scientist who require
accurate double-precision values.

This paper presents a direct implementation of an
e−x core in a CORDIC-style suitable for FPGA de-
vices. The core generates IEEE 754 standard double-
precision exponential values. The implementation de-
scribed consumes fewer resources than the current ap-
proaches in the literature, enabling more e−x cores per
FPGA. Specifically, the results show that the implemen-
tation achieves correct double-precision e−x values,
consuming only 8% of slices on a Virtex 4 XC4VFX60
FPGA.

1 Introduction
Many processes in nature exhibit an exponential decay
property. From gravitational forces to gradients of pro-
tein concentration, computational scientists make ex-
tensive use of e−x in computer simulations of physi-
cal phenomena. However, most microprocessors do not
provide an exponentiation unit in hardware. Instead the
operation (and other transcendal functions) are imple-
mented in software via a combination of look-up ta-
bles, floating-point multiplies, and additions. These al-
gorithms are very slow when compared to a hardware
implementation [1].

Field-Programmable Gate Arrays (FPGAs) are
increasingly being included in commercial high-
performance computing systems as “compute acceler-
ators.” For many computational scientists, a hardware
implementation of e−x would be an appropriate and ad-
vantageous use of these resources. Unfortunately, most
hardware implementations of e−x described in the lit-
erature are unsuitable for scientific applications. Ei-
ther the implementation does not map well to FPGAs
(consuming an unacceptable amount of resources) or
preventing multiple instances or the design sacrifices
double-precision IEEE 754 compatibility for speed (a
trade-off that many computational scientists are unwill-
ing to accept).

This paper describes an implementation of a double-
precision, IEEE 754-compatible exponentiation unit.
The design is an implementation of the CORDIC algo-
rithm and does not require large look-up tables (making
it possible to instantiate multiple parallel cores). The
customary algorithm has been slightly modified to re-
duce the number of logical gates. In addition, the core
produces both ex and e−x without the introduction of a
floating point divide. The implementation can be read-
ily extended to other transcendental functions (sine, co-
sine, etc.) and has the potential of being pipelined in the
future.

Hardware methods for exponential functions include
CORDIC based methods, table look-up methods and
polynomial approximation. As the precision of the ex-
ponential function increases the above methods will suf-
fer from an exponential increase in the look-up table
size and in large word-size multiplications. However
the CORDIC [11] method is an iterative algorithm for
a two-dimensional vector in linear, circular and hyper-
bolic coordinate systems, using only add and shift op-
erations. The add and shift operation of the CORDIC
[8] algorithm makes it easy to implement the algorithm
on the hardware. Increasing the precision (i.e single to

1



double precision), linearly increases the size of look-up
table and the adders.

2 Design and Implementation
As defined by Hekstra [5], a floating-point CORDIC,
is one in which a floating-point vector is rotated over
a floating-point angle. The angle derived depends on
whether the mode of operation is vectoring or rotation.
The range of angle x is confined to be x ∈ (0, ln(e)).
The basic convergence range of the exponential func-
tion is between 0 and 1.1182 [6]. The convergence
range is kept less than the maximum value so that pre-
cise results can be generated.

This paper concentrates on the rotation mode of
CORDIC. The CORDIC method is governed by set of
three equations, the angle z, x coordinate and the y co-
ordinate. The x and y coordinate corresponds to cosh
and sinh respectively. The difference of cosh(x) and
sinh(x) for x > 0 is nothing but e−x. The CORDIC
equations for hyperbolic rotations are shown below.

xi+1 = xi + yi · di · 2−i (1)
yi+1 = yi + xi · di · 2−i (2)
zi+1 = zi − di · tanh−1(2−i) (3)

where

di =
{
−1 if zi < 0
+1 otherwise

The value of di indicates the direction of rotation; x and
y are the vector components. The CORDIC algorithm
iterates to either zero y or zero z depending on the func-
tion required. Since our aim is e−x, the set of equations
(1 - 3) can be reduced by substituting w for (x − y) as
shown in equation (4) below.

wi+1 = wi − wi · di · 2−i (4)

Hence there are only two equations (3) and (4) that
needs to be iterated to calculate the value of e−x. The
above two equations (3) and (4) has four major hard-
ware components: A (fixed size) Hyperbolic tangent
look-up table, double precision adder/subtractor, 2:1
and 61:1 multiplexer and a subtractor.

The value of tanh−1(2−i) is pre-computed for each
i and these values are used to create a look-up table.
These hyperbolic arctangent values are stored in the
look-up table as IEEE 754 double-precision format with
little modification. The look-up table entries depend on
the number of iterations. The number of iterations is

61 in our design. These look-up table values are ref-
erenced through a 61:1 multiplexer. The look-up table
requires about 456 bytes (60×61 bits). The most signif-
icant bits for the look-up table entries are the same and
hence are stored as a 60-bit values instead of 64 bit. The
four most significant bits are concatenated in the design
logic, there by reducing the size of the look-up table.

The double precision adder/subtractor is a three-stage
pipelined core for addition or subtraction depending
upon the operation flag. A 2:1 multiplexer is used to se-
lect the initial or the iterated value. A 61:1 multiplexer
is used to select the hyperbolic tangent values from the
look-up table. The values are selected using the itera-
tion count. A normal subtractor is used to replace the
division by two operation. The implementation of di-
vision by two operation in IEEE 754 double precision
format is done by subtracting the exponent by one and
concatenating with the mantissa and the sign bit.

������
����	
	��
���

���
���

����
���

��

	���������

������������

�������

��

��

����

���

�

��

��
��

��

��

�

�����������

�
�
�

�

�

��

��

���

��

Figure 1: Angle Computation Hardware

The core consists of two main components: angle
computation module and the main computation mod-
ule all are written in VHDL and described in detail be-
low. The angle hardware module shown in Figure 1
is designed in accordance with the equation (3). For
calculating a double precision e−x, the iterations needs
to done on a 64-bit wide data. The equation requires
hyperbolic arctangent values for performing iterations.
These values from the look-up table are then fed into the
61:1 multiplexer. The current iteration value is used to
select the value from the look-up table, using the mul-
tiplexer. The multiplexer value is then added or sub-
tracted from the previous result of the iteration. The
result is then fed back for the next iteration. A 2:1 mux
is used for choosing between the input angle value (x)
and the previous iteration result. When its the first it-

2



eration, the input angle value is chosen. The result of
each iteration step decides whether the next iteration is
addition or subtraction operation. If a negative result is
obtained then an addition is performed in the next iter-
ation. The last bit of the result, which is the sign bit de-
cides the next iteration addition/subtraction operation.
This value is also used for the main iteration hardware.

������
����	
	��
���

���
���

����
�����

��

	���������

������������

�������

��

 �

����

���

�

��

��
��

��

��

�

�

�

!"#!�
�����

�����$%����
��

��


	&���	�

Figure 2: Main Computation Hardware

The main computation hardware module shown in
Figure 2 is designed in accordance to the equation (4
) and works on an extended floating point format (72
bits). Eleven bit for exponent, sixty bits for man-
tissa and one sign bit. The initial value is fed into
the subtractor or the ‘Sub’ block which does a sub-
traction on the exponent part of the double precision
value. This corresponds to dividing a double preci-
sion value by 2i. The mantissa and the sign bit is then
concatenated in the ‘Conc’ block with result from the
‘Sub’ block. The value is then given into the floating
point adder/subtractor. The addition/subtraction oper-
ation is dependent on the value of previous angle it-
eration. If the angle iteration gives a negative value
in the previous iteration a subtraction is performed or
addition is performed. The result is then fed back for
the next iteration. The initial value for the iteration
is chosen by using a 2:1 mux. The elemental rota-
tions in the hyperbolic coordinate system do not con-
verge, However convergence can be achieved if itera-
tions 4, 13, 40, 121.., k, 4k + 1 are repeated [9]. Each
hardware module is iterated n of times until a satisfi-
able accuracy is achieved. An n+1 number of iteration
produces a n bit of accuracy [10]. A total of 61 itera-
tions are required for a precision of 52 bits with eight
guard bits. In order to increase the accuracy of the re-
sults the iterations are performed on a 72-bit data. These

additional 8-bits, called as the guard bits increases the
accuracy of the results.

The angle computation hardware and main compu-
tation hardware are a separate sub-processes written
in VHDL and controlled by a Finite State Machine
(FSM). The FSM has four states called as ‘idle’, ‘ini-
tial’, ‘setup’ and ‘result’. The process waits in the ‘idle’
state until a valid new data (x) is received (core nd
= 1) for computation of exp(−x). Once a value is
received, the process transitions into the ‘initial’ state,
where the data for the iteration process is computed. In
the ‘setup’ state the floating point core is fed with the
values. Once the values are fed into the core the pro-
cess transitions into the ‘result’ state. In the ‘result’
state the process waits for the results from the floating
point adder/subtractor core. Once the results are gen-
erated by core, these results are used as inputs for the
next iteration. In case of the angle iteration process the
hyperbolic arctangent look-up table value is read and is
kept ready for the next state and in case of main iteration
process the previous/initial value is divided by 2i and is
kept ready for the next state. The ‘result’ state also se-
tups the signals for the floating point adder/subtractor.
Once the data is ready for the next iteration, the itera-
tion count is checked and if the iteration count has not
reached a pre-set value, the FSM transitions back to the
‘setup’ state. If the iteration count has been reached the
pre-set value, the FSM outputs the result and transitions
into the ‘idle’ state. The FSM outputs a 72-bit result.
The higher 64 bits are used as the result and the lower
8-bits are discarded.

3 Results
The error analysis of the core was done in a range of an-
gle between 0 and ln(e) i.e x ∈ (0, ln(e). However this
range is extended by doing a simple pre-computation.
This pre-computation would take in a IEEE 754 double
precision value and convert it into a input of our con-
vergence range, multiplied by a value in the form of
2p. The pre-computation is done using simple mathe-
matical identities. The value of p is given as another
input to the core. This input corresponds to p left shifts.
An exhaustive set of test values (ln(2) × 1011) were
used to test the core. The generated test values were
between the input range. The observed maximum error
was 2−53. However the average error was 0.047×2−53,
which is about 5% of the test cases. This shows that the
results are very less prone to errors (only one in twenty
on an average). As far as in the literature none of the de-
signs have achieved such a high percentage of accurate

3



Details Our values Chen [2] Jamro [7] Doss [4] Detrey [3]
Style CORDIC CORDIC + TD Table-Driven Table-Driven Table Driven

Precision Double Single, Double Double Single Single
Error 2−53 (max) 0.8735× 2−53 (max) 0.4708 (Mean) ND ND

Guard bits 8 bits ND 4 bits ND 5 bits
FPGA Virtex 4 XC4VFX60 ND Virtex 4 LX200 Virtex II 4000 Virtex II XC2V1000

Core frequency 100 MHz ND 166 MHz 85 MHz 100 MHz
Slices 2024 ND 5000 5564 948

DSP48/MUL18 3 ND 0 ND ND
ROM table size 3.57 Kbits 81.875 Kbits 108 Kbits ND ND
Latency of core 258 clk cyc 86 gate delays 27 clk cyc ND 85 ns

Table 1: Performance Results of the Core (ND means no data available in reference)

results. The design uses eight guard bits to achieve such
a high number of the precise results. The core iterates
64 number of times to get a accurate results. As dis-
cussed earlier, since the core requires 53 iterations for
IEEE 754 double precision standard and with 8 guard
bits, the number of iterations are 61. Iterations 4, 13,
40 are repeated for convergence. The above iterations
sums up to 64. Since 64 iterations are performed, the
latency of the core is 64 × 4 clock cycles. Every itera-
tions takes about four clock cycles. The total latency is
about 258 clock cycles.

The proposed core has about 2024 slices and
also uses three DSP48 cores for the entire design.
The smaller size of the core was achieved by hav-
ing a smaller look-up table with double-precision
adder/subtractor. The small foot print of the core helps
in easily adding the core to any application. It is also
worth nothing that the small size of core helps in in-
creasing the number of core units per FPGA and also
aids in easily designing a pipelined version of the core.
The implementation results are shown in table 1. The
table also compares the existing implementation. Our
design though has a higher latency, has very less aver-
age error, slices and ROM table size. The latency of the
core can be easily reduced by having more number of
cores computing e−x values at the same time, there by
reducing the average latency time.

4 Conclusion

This paper describes a modified CORDIC FPGA
double-precision exponential core. The core is only 8%
of the total slices on Xilinx Virtex 4 XC4VFX60 device
and multiple, parallel cores can be instantiated. The
maximum error of the designed core was 2−53. The
average error was 0.047× 2−53.

References
[1] H. T. Bui and S. Tahar. Design and synthesis of an IEEE-

754 exponential function. In 1999 IEEE Canadian Con-
ference on Electrical and Computer Engineering, vol-
ume 1, pages 450–455, Edmonton, Alta., Canada, 1999.

[2] C. Chen, R.-L. Chen, and M.-H. Sheu. A fast addi-
tive normalization method for exponential computation.
In DSD ’03: Proceedings of the Euromicro Symposium
on Digital Systems Design, page 286, Washington, DC,
USA, 2003. IEEE Computer Society.

[3] J. Detrey and F. de Dinechin. Parameterized floating-
point logarithm and exponential functions for fpgas. Mi-
croprocess. Microsyst., 31(8):537–545, 2007.

[4] C. C. Doss and J. Robert L. Riley. Fpga-based im-
plementation of a robust ieee-754 exponential unit. In
FCCM ’04, pages 229–238, Washington, DC, USA,
2004. IEEE Computer Society.

[5] G. Hekstra and E. F. A. Deprettere. Floating-point
CORDIC. In E. E. Swartzlander, M. J. Irwin, and
J. Jullien, editors, Proceedings of the 11th IEEE Sym-
posium on Computer Arithmetic, pages 130–137, Wind-
sor, Canada, 1993. IEEE Computer Society Press, Los
Alamitos, CA.

[6] X. Hu, R. G. Harber, and S. C. Bass. Expanding the
range of convergence of the cordic algorithm. IEEE
Trans. Comput., 40(1):13–21, 1991.

[7] E. Jamro, K. Wiatr, and M. Wielgosz. Fpga implementa-
tion of 64-bit exponential function for hpc. In FPL 2007,
pages 718–721, 2007.

[8] U. Meyer-Bäse, A. Meyer-Bäse, and W. Hilberg. Co-
ordinate rotation digital computer (cordic) synthesis for
fpga. In FPL ’94, pages 397–408, London, UK, 1994.
Springer-Verlag.

[9] B. Parhami. Computer arithmetic: algorithms and hard-
ware designs. Oxford University Press, Oxford, UK,
2000.

[10] J. Valls, M. Kuhlmann, and K.K.Parhi. Efficient map-
ping of cordic algorithms on fpga. In SiPS 2000: IEEE
Workshop on Signal Processing Systems, pages 336–
345, 2000.

[11] J. E. Volder. The cordic trigonometric computing tech-
nique. IRE Transactions on Electronic Computers, EC-
8, no. 3:330–334, 1959.

4


	Introduction
	Design and Implementation
	Results
	Conclusion

