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ABSTRACT
The scientific community has been using FPGA-based com-
putation engines as cellular automata (CA) accelerators for
some time now. With the recent advent of more advanced
FPGA logic it becomes necessary to better understand the
mapping of CA to these systems. In this paper, we present
a methodology to predict the performance of running such
CA on specific FPGA hardware before engineering the de-
sign in reality. This will help to determine the optimal val-
ues for the various parameters that control the application
and the given FPGA hardware specifications. The model
is validated for two different types of two-dimensional CA
algorithms.

1. INTRODUCTION

CA are decentralized spatially extended systems consisting
of large numbers of simple and identical components with
local connectivity [1]. Such systems have the potential to
perform complex computations with a high degree of effi-
ciency and robustness, as well as to model the behavior of
complex systems from nature. CAs have been studied ex-
tensively in the natural sciences, mathematics and in com-
puter science. They have been considered as mathemati-
cal objects about which formal properties can be proven and
have been used as parallel computing devices, both for high-
speed simulation of scientific models and for computational
tasks such as image processing. CAs have also been used as
abstract models for studying emergent cooperative or col-
lective behavior in complex systems, see, e.g. [2]. In addi-
tion CAs have been successfully applied to the simulation
of a large variety of dynamical systems such as biological
processes including pattern formation, earthquakes, urban
growth, galaxy formation and most notably in studying fluid
dynamics. Their implicit spatial locality allows for very ef-
ficient high performance implementations and incorporation
into advanced programming environments. For a selection
of the numerous papers in all of these areas, see, e.g. [3–9].

With the application of CAs in such a wide diversity
of fields it is not surprising that both the scientific commu-
nity and industry have researched many possible implemen-
tation approaches, from massively parallel and distributed
systems, to reconfigurable platforms such as FPGA-based
systems [10–15].

Although the FPGA-based CA accelerator implementa-
tions have shown promising results (see e.g.[10, 11]), they
have not been able to explicitly identify the various factors
or parameters that were exploited to gain performance. A
model to predict the performance as a function of parame-
ters related to the FPGA technology and to the CA is needed.
Not only does this helps to better understand the mapping
process and to exploit the parameters optimally but also de-
fines the limits which are to be expected.

In this paper, we present a model to evaluate the per-
formance of a two dimensional CA executed on a specific
FPGA hardware technology before engineering the design
in reality. Instead of directly attacking the design and im-
plementation of the accelerators using the traditional engi-
neering mindset, a more scientific approach such as perfor-
mance modeling as presented in this paper would provide
more insight into bridging the gap between the application
and the hardware implementation. Not only does this pro-
vide pros and cons for the said implementation but it also
helps to determine the optimal values for the various pa-
rameters that control the application and the given hardware
specifications.

The rest of the paper is organised as follows: Section
two introduces a simple CA computation model using FP-
GAs and the efficiency for such a setup is defined. Section
three takes the model further and explains the CA compu-
tation model for real applications with an assumption that
their lattice size are larger than the FPGA capacity. The de-
tailed strategy of the computation method for our CA accel-
erator implementation is presented in section four. Section
five introduces the two specific CA algorithms that are used
to validate our model and provides the performance model



for their respective implementation. The implementation re-
sults with the optimal parameters defined by the application
and the hardware technology for each of the CA algorithms
are shown in section six. Finally, conclusions and the future
work are discussed in section seven.

2. A GENERIC PERFORMANCE MODEL

FPGA based computation engines appear to be very attrac-
tive for CA algorithms, which consist of a uniform structure
composed of many Finite State Machines, thus matching the
inherent design layout of FPGA hardware.

Consider a basic setup where the CA lattice is small
enough that each CA cell is processed using a dedicated pro-
cessing element (PE). As the whole CA lattice completely
fits into the FPGA space the resulting computing system is
therefore simple. For CA computation, the whole lattice is
downloaded to the FPGA from the host machine and is run
for the required number of generations. Finally, the resulting
CA generation is uploaded back to the host system.

Assuming the host system does all the required pre and
post processing, the performance model for such a system
is defined as follows. We assume that we want to com-
puteg generations of a CA. When executed on a stand alone
PC system this would takeTpc execution time. Using the
PC-FPGA system the same computation takesTft execu-
tion time, and we write

Tft = Tfpga + Tfo (1)

where,Tfpga is the pure execution time on the FPGA, and
Tfo is total overhead time to pre and post process the CA lat-
tice and transfer time to move the data to the FPGA and back
to the main memory. Note that in Eq. (1) we assume a serial
implementation, that is, the useful computations (Tfpga) do
not execute at the same time as the overhead work (Tfo). In
many cases however such “latency hiding” is possible and
then the model needs to be adapted slightly. We can now
define the obtained speedup by running on the FPGA as

S =
Tpc

Tft

=
Tpc/Tfpga

1 + Tfo/Tfpga

=
Smax

1 + fo

(2)

The maximum speedupSmax that can ever be obtained on
the PC-FPGA system isTpc/Tfpga. Only if the overhead
time is zero this speedup will be obtained. For finite over-
head times the decrease of maximum speedup is determined
by a dimensionless number, the fractional overheadfo =
Tfo/Tfpga. Note that iffo is small, Eq. (2) can be written
as

S ≈ Smax(1 − fo) (3)

We can also define an efficiency of the FPGA implementa-
tion as

ε =
S

Smax

(4)
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Fig. 1. Basic computation model.

The efficiency is a number between 0 and 1. We assume
that the overhead consists of the time to preprocess the CA
lattice on the PC (Tpre), the time to download the CA lattice
from PC to FPGA on-board memory (Ts), the time to upload
CA lattice from the FPGA on-board memory to the PC (Tr),
and the time to post process the CA lattice on the PC (Tpos).
With these definitions we can now write

Tfo = Tpre + Ts + Tr + Tpos (5)

and the fractional overheadfo can now be written as a sum-
mation of 4 different types of fractional overheads, i.e.

fo = fpre + fs + fr + fpos (6)

with fi = Ti/Tfpga and i ∈ {pre, s, r, pos}. The terms
above depend on various parameters like clock frequency
of the hardware, number of CA cells, number of CA gen-
erations computed etc. Note however that such model is
only feasible when the whole CA lattice fits the given FPGA
space.

For real CA applications the lattice is large (typically
1283 cells or more). In the sequel we assume that the lattice
is larger than the FPGA capacity but still fits the memory
banks available on the FPGA board. Therefore, the result-
ing computing system is composed of a host machine for
pre and post CA processing with an FPGA board connected
as a co-processor having on-board multiple memory banks.
The FPGA runs the CA compute engine and the on-board
memory banks store the CA lattice computation. The two
(preferable independent) memory banks store two consecu-
tive automaton states similar to the CAREM processor [10]
as shown in Fig. 1.

The CA compute engine (CE) hasn compute blocks
(CB) as shown in Fig. 2 and uses memory banks A and B
alternatively as source and destination memory to hold the
CA lattice. Further, each CB is composed ofk processing
elements (PE) wherek is the number of the CA cells that
the CE is able to read from the source memory in parallel.
(Note that each CB has to store 3 columns i.e. left, middle
and the right column in order to compute the next state for
the middle column). Each PE implements the CA transition
function as shown in Fig. 3.



PE 1

PE 2

PE 3

PE 4

PE k

C
om

pute B
lock

. . . 

PE 1

PE 2

PE 3

PE 4

PE k

C
om

pute B
lock

. . . 

PE 1

PE 2

PE 3

PE 4

PE k

C
om

pute B
lock

. . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

PE 1

PE 2

PE 3

PE 4

PE k

C
om

pute B
lock

. . . 

Boundary conditions

Boundary conditions

CB 1CB 2CB 3CB n

CA Compute Engine

PicoBlaze MicrocontrollerControl block

G
eneration ’G

’ from
 external m

em
ory

G
eneration ’G

+
n’ to external m

em
ory

Fig. 2. 2D CA block diagram

3. TWO DIMENSIONAL CA ON FPGA

We will now restrict ourselves to two dimensional CA, and
apply an algorithm based on pipelining over CA generations
and alternate use of memory banks as source and destination
memory, as proposed by Kobori[11] and Cappuccino[10] re-
spectively.

Based on the computation model introduced above, with
the CE having only a single CB, the CE first reads the state
of k-cells from the source memory bank. After the CB com-
putes the next state ofk-cells, the CE finally writes out this
new state into the destination memory bank. To further im-
prove the computations, instead of having only a single stage
CE engine where only a single generation is computed, we
can have multiple CB’s connected in a pipeline as shown in
Fig. 2. This pipelined CE results in the computation ofn
generations in a single sweep (i.e. whole CA lattice from
source memory is passed through the CE for computations
and computation results are stored in destination memory)
wheren is the number of CB’s connected together. This
pipelined model has been successfully implemented by Ko-
bori [11] but without alternating the roles of the two memory
banks as source and destination memory after every single
sweep.

Provided the two memory banks are completely inde-
pendent and with the multiple CB’s pipelined model, the CE
readsk cells from source memory, computesn× k cells and
writesk cells to the destination memory in parallel.

The CA hardware implementation was done using the
Spartan-3 starter kit board. The CA algorithm implementa-
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tions in FPGA logic and related performance modeling are
based on designs implemented using this board. VHDL was
used to describe the behavior and structure of the algorithms.
Further, VHDL code was compiled and synthesized using
Xilinx design tools.

The Spartan-3 board has one XC3S200 FPGA, and two
512KB SRAM banks. The two SRAM banks are not inde-
pendent as both of them are addressed using common pins
from the FPGA, therefore in this case the CA compute en-
gine is not able to read and write memory banks simultane-
ously.

The Game of Life and the Lattice Gas HPP model were
chosen as the CA algorithms that we implemented for this
benchmark. They are both very simple CA’s with a one-bit
and a four-bits state per cell respectively, but they suit our
goal of validation of our performance model. The next step
will be to implement more advanced CA’s, simulating e.g.
hydrodynamics or tumor growth.

The FPGA holds the pipelined CE implementation as
well as the Xilinx PicoBlaze softcore processor (PB). The
PB is used to provide the necessary interface that is required
to (a) initialize the source memory bank, (b) retrieve the
computed results from the destination memory bank, (c) start
the CE, and (d) provide a serial connection to the hyperter-
minal running on the host machine. With the FPGA con-
figured, the user initiates the process of initializing source
memory via PB, next the CE is started to run for a speci-



fied number of generations. When the CE is done with the
computations it signals the PB accordingly. The CA com-
putation engine alternatively reads out the data from one of
the SRAM banks and writes out the computed results to the
other SRAM bank.

4. DETAILED PERFORMANCE MODEL

To explain the detailed strategy of the computation method
for our CA accelerator implementation as shown in Fig. 2,
considerx to be the number of columns andy (= k, to sim-
plify explanation) is the number of rows of the CA lattice.
With this setup, the FPGA will read the whole column (since
we assumedy = k) in parallel say in timeRd. With bound-
ary conditions along the top and bottom edge of the lattice
available within they-cells itself, the single CB will output
exactlyy-cells with correct computed next state. With the
FPGA engine able to read (and write in parallel as well)k-
cells per column in timeRd and withCm being the PE’s
compute time, as long asRd ≥ Cm (which is true for algo-
rithms like Game of Life that we implemented), the execu-
tion times are completely I/O bound. Therefore, the time to
computex columns is just the time needed to read them into
the FPGA:TR = xRd.

However, if the boundary condition along the sides of
the lattice are not available at the start of the computation,
the CE has to re-read the first two columns of the lattice
once it is done with reading thex columns, in order to cor-
rectly compute the next state of they-cells of the last and the
first column of the lattice. This results in an overhead of re-
reading two columns when the number of CB=1 in the CE. If
hard boundary conditions are considered then this overhead
is zero.

If we further pipeline the CE withn CB’s, we still get
y-cells with correct output but the overhead of re-reading
columns due to boundary conditions go up by2n. Then, the
overhead time isTRO = 2nRd.

Moreover, withn CB’s, it requires some time to fill the
pipeline before the CE starts writing out computed data.
This start up time isTWr = (n + 1)Rd.

Therefore, for I/O bound CA simulations withy=k, the
total execution timeTE to computen generations is

TE = TR + TRO + TWr = (x + 3n + 1)Rd (7)

With alternate use of memory banks as source and des-
tination memory, we can computeg generations simply by
reusing the CE that hasn CB’s only by swapping the role of
memory banks as required. Therefore, if the required gen-
eration isg, such that to compute it, it requires to sweep the

whole CA lattice through the CEb times whereb=
g

n
, then

the total execution time is simplyb×TE.
Now, let’s consider a more realistic scenario withk <

FPGA internal memory≤ y as shown in Fig. 4, we can use

x

y = m(wk − 2n)

w*k

w*k

2n

2n

w*k

2n

Fig. 4. CA lattice with y>> k .

the available internal memory within the FPGA to bufferw
× k cells within each CB. This enables us to store the data
for w computational planes as shown in Fig. 4 during CA
computation. (Note: the three internal buffers of every PE,
now have a capacity ofw each).

Sincey>> w, CE no longer has the boundary conditions
available along the two edges of thew×k cells wide com-
putational plane. Therefore, each CB outputs the two cells
along the two edges with wrong states as shown in Fig. 5.
With the n CB pipelined engine, the CE outputs2n cells

(w*k) cells
Input

(w*k − 2) cells
Output C
B

 w
ith k C

E
’s

Fig. 5. Loss due to boundary conditions.

with wrong states and this results in the overlap of compu-
tation planes along x-axis that require to be recomputed in
order to get correct results. Therefore, as shown in Fig. 4,
to computen generations i.e. sweeping the CA lattice once
through the CE, the CE has to sweep the whole CA lattice
from the source to destination memory inm computational
planes wherem is

m =
y

wk − 2n
(8)

With this setup, to computeg generations, the total execu-
tion time is now

TE = bmw(x + 3n + 1)Rd (9)

Substituting forb andm in (9), we get

TE =
gyw(x + 3n + 1)Rd

n(wk − 2n)
(10)



Next we try to find an expression for the optimal value
of n, i.e. the depth of the pipeline. Rewriting Eq. (10), we
have

TE =
gwRd

n(wk − 2n)
[xy + y(3n + 1)] (11)

since we can safely assume thatx >> 3n+1, we can reduce
Eq. (11) to

TE =
gwxyRd

n(wk − 2n)
(12)

Eq. (12) is minimized by takingn equal to

noptimal =
wk

4
(13)

Substitutingnoptimal for n in Eq. (12), we get

TE =
8gxyRd

wk2
(14)

Thus confirming the intuitive expectation that a FPGA with
larger internal memory or capacity to hold more logic and
improved I/O interface between the FPGA and on-board mem-
ory banks improves the execution time accordingly. Eq. (14)
also states explicitly how the parameters defined by the im-
plementing technology can impact the performance of the
CA accelerator.

5. TEST BENCHES

To demonstrate the proposed performance model for two di-
mensional CA’s, we implemented and validated our model
for two different CA algorithms: The Game of Life and the
HPP lattice gas automata.

5.1. The Game of Life

The Game of Life is the most famous CA algorithm and is
a simple model for simulating artificial life. The automata
is implemented on a square lattice where each lattice site is
eitherdeador alive, therefore, a single bit state machine is
used to represent each lattice site.

The system evolves by updating each of the lattice sites
simultaneously based on the update rules that are determined
by the state of each cell and their respective neighborhood.
The update rules are (1) an alive site with either two or three
alive neighbor sites remains alive, (2) a dead site with three
alive neighbor sites becomes alive, and (3) the state of the
rest of the sites remains unchanged.

Considering a 1024x1024 the Game of Life lattice that
requires to be computed for 512 generations. The perfor-
mance model for such an implementation as per Eq. (12)
has parametersx = y = 1024, g=512 and these values are
defined by the application. Rest of the parameters for Eq.

(12) are specified by the FPGA implementation technology
i.e. k= 16, is the number of cells CE can read from source
SRAM, w andn depend on the available logic space within
the FPGA chip andRd is determined by the hardware clock
frequency. With varying values forn and w in Eq. (12),
the respective execution times for the Game of Life are as
shown in Fig. 6.
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Fig. 6. Performance model to compute512th generation of
The Game of Life.

5.2. Lattice gas automata: The HPP model

Lattice gas automata (LGA) [16] are a relative novel method
to simulate the hydrodynamicsof incompressible fluids. The
flow is modeled by particles which reside on nodes of a reg-
ular lattice. The extremely simplified dynamics consists of
streaming step where all particles move to a neighboring lat-
tice site in the direction of their velocities, followed by a
collision step, where different particles arriving at the same
node interact and possibly change their velocity according
to collision rules. The main feature of the model are exact
conservation laws, unconditional stability, a large number of
degrees of freedom, intrinsic spontaneous fluctuations, low
memory consumption, and the inherent spatial locality of
update rules, making it ideal for parallel processing [1, 17].

The HPP model was the first LGA model invented and
introduced by Hardy, Pomeau and de Pazzis in 1973. In this
model the particles are restricted to move on the links of
the square lattice and the motion is emerged in discrete time
steps. Each particle travels at a unit speed i.e. moves from
one lattice site to a neighboring site in each time step. As
only one particle is allowed to travel in each direction along
a link, a maximum of four particles can arrive at any site at
any time step. Therefore, a 4-bit state machine is used to
represent each of the HPP lattice site. The possible configu-
rations of particles at each site are shown in Fig. 7(a) along
with possible coding of the 4-bit state machine. The parti-



cles collide as per the rules as shown in Fig. 7(b) conserving
both the mass and momentum for the system.
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Fig. 7. The HPP (a) configurations, (b) collision rules.

Similar to the Game of Life computation, if we again
consider a 1024x1024 square lattice for the HPP model that
requires to be computed for 512 generations, all the vari-
ables defined by underlying FPGA implementation technol-
ogy remain the same exceptk=4, which is the number of
cells CE can read from source SRAM. Again, with varying
values forn andw Eq. (12) for the HPP model, the respec-
tive execution times for the model behave somewhat similar
to the Game of Life one as shown in Fig. 6.

6. RESULTS

The Spartan-3 board has two SRAM chips, which are how-
ever not completely independent. Therefore, we had to read
and write to the source and destination memory alternatively
from the CE running on the FPGA. Since the Spartan-3 board
runs with a maximum clock frequency of 50MHz and the
available asynchronous SRAM chips on board have access
time≤ 10ns, this allowed us to read, compute and write in
two clock cycles. This implies thatRd is 2× 20ns for our
system implementation.

Specific to our Spartan-3 board, for the Game of Life
implementation,k=16 and the maximum logic that was pos-
sible to fit the underlying FPGA chip was withn=16 and
w=9. These values also resulted in the best possible compu-
tation time for the available FPGA hardware resources for

the given setup as shown in Fig. 8.
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For the HPP model implementation, Spartan-3 board de-
fines k=4 and the maximum logic that was possible to fit
the underlying FPGA chip was again withn=16 andw=9.
But, for this case these values forn andw respectively re-
sult in the worst computation time for the given setup. The
best computation time was achieved withn=8 andw=16 as
shown in Fig. 9.



7. CONCLUSION AND FUTURE WORK

In this paper, we presented a model to evaluate the per-
formance of a two dimensional CA executed on a typical
Spartan-3 FPGA board. We explicitly showed how the vari-
ous parameters defined by the FPGA technology control the
CA accelerator engine that was implemented for the Game
of Life and the HPP model. Using this approach we were
able to predict the performance of the algorithm, for a spe-
cific FPGA technology, before the algorithm was implemented
and run in reality. We are now able to exploit the parame-
ters optimally. As a result of this, the FPGA hardware re-
sources are used in a way that enable the implementation
of the fastest possible accelerator, for the application, using
specific technology. Further, we also improved the pipelined
CA computation engine with alternate uses of memory banks
as source and destination memory.

In the future, we will look into the data transfer between
the host machine and the FPGA, and include the measure-
ments in our speedup equations. We will also investigate
into compute bound computations i.e. CA’s with complex
rules (e.g. using floating points). Advanced hardware plat-
form with V4/V5 Xilinx FPGA’s will be used for implemen-
tations. We will further investigate the three dimensional
CA’s, running real CA application like hydrodynamics or
tumor growth.
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