

Exploring Accelerating Science Applications with FPGAs

Olaf O. Storaasli
Oak Ridge National Laboratory

Olaf@ornl.gov

Dave Strenski
Cray Inc.

Stren@cray.com

Abstract

 FPGA hardware and tools (VHDL, Viva, MitrionC and
CHiMPS) are described. FPGA performance is evaluated
on two Cray XD1 systems (Virtex-II Pro 50 and Virtex-4
LX160) for human genome (DNA and protein) sequence
comparisons for a computational biology code (FASTA).
Scalable FPGA speedups of 50X (Virtex-II) and 100X
(Virtex-4) over a 2.2 GHz Opteron were achieved. Coding
and IO issues faced for human genome data are described.

Keywords: FPGA, reconfigurable, DNA, RNA, Smith-
Waterman, Cray, FASTA, XD1, Virtex, OpenFPGA

Introduction

 This paper describes Field-Programmable Gate Arrays
(FPGAs), several tools used to program them and how
100X speedup was achieved for a science application.

 Remarkable innovations in computer technology [1-2] are
fulfilling NASA future projections [3] for faster science and
engineering computations. One innovation in the forefront
is to harness FPGAs to accelerate High-Performance
Computing (HPC) applications by one or more orders of
magnitude over traditional microprocessors. FPGAs were
invented in 1984 by Ross Freeman, co-founder of Xilinx
Inc. FPGAs are extremely flexible and dominated by
interconnections to thousands of embedded functions (Fig.
1. left) like adders, multipliers, memory, and logic slices
(Fig. 2). They perform high-speed computations and
communications (e.g., Hypertransport) in parallel via digital
logic: LookUp Tables (LUTs), Registers, RAM, etc. Unlike
“fixed” microprocessors, FPGA’s are reconfigurable “on
the fly” by users in the “field”, thus, “field programmable”.
 The Virtex-4 is available with one or more PowerPC
(PPC) processors on the chip (Fig 1. right). The rapidly
growing (15-20%/year) $2B FPGA market (focused on the
high-volume communications) is dominated by Xilinx and
Altera. Aerospace and High-Performance Embedded
Computing (HPEC) users are rapidly expanding their
FPGA use. Although HPC sales (< 1%) are small, FPGA
designers are open to HPC requirements for their next
generation designs.

Figure 1. Virtex-4 FPGA with PPCs, memory, I/O (rt)

Figure 2. Virtex-4 FPGA logic slice: LUTs, RAM...

FPGA Characteristics: FPGA layout is extremely
regular compared to microprocessors, simplifying
fabrication, and allowing FPGAs to be among the first to
reduce feature sizes (90nm => 65nm => 45nm). For space
and flight use, this regularity and triply-redundant code,
limits radiation damage (i.e. NASA Mars Rovers). At each
clock cycle, FPGA algorithms (when coded to maximize
the number of parallel operations) use nearly 100% of their
silicon, compared to less efficient microprocessors which
use < 2% of their silicon (while drawing 10x FPGA power
to perform only one or two operations).

Figure 3. FPGA Characteristics: Logic Cell and clock speed growth, Computation and bandwidth speeds.

Figure 3 shows several key FPGA characteristics. Unlike
microprocessors, FPGAs continue to advance at Moore’s
Law rate and have far to go before reaching logic cell and
speed limits (Fig. 3., left). FPGA clock speeds (often 100-
200 MHz) have far to go before facing heating issues that
drove microprocessors to multi-core chips with reduced
clock speeds. When FPGA applications are programmed to
maximize parallelism, their computation speed far exceeds
that of microprocessors (Fig. 3., right). Being high-speed
communications devices, the memory and IO bandwidths
also significantly exceed those of microprocessors (Fig. 3).

 FPGA Coding: As FPGAs were developed by logic
designers, they are traditionally programmed using circuit
design languages such as VHDL and Verilog. These
languages require the knowledge and training of a logic
designer, take months to learn and far longer to code
efficiently. Even once this skill is acquired, VHDL or
Verilog coding is extremely arduous, taking months to
develop early prototypes and often years to perfect and
optimize. FPGA code development, unlike HPC compilers,
is greatly slowed by the additional lengthy steps required to
synthesize, place and route the circuit.
 Once the time is taken to code applications in VHDL, its
FPGA performance is excellent. In particular, applications
using basic integer or logic operations (compare, add,
multiply) such as DNA sequence comparisons,
cryptography or chess logic, run extremely well on FPGAs.
As floating point and double-precision applications rapidly
exhausted the number of slices available on early FPGAs,
they were often avoided for high-precision calculations.
However, this situation has changed for current Xilinx
FPGAs (Virtex-4 and Virtex-5) which have sufficient logic
to fit about 80 64-bit multiply units [2].
 While early FPGAs had sufficient capability to be well
suited for special-purpose HPEC, their use for general-
purpose HPC was initially restricted to a first-generation of
low-end reconfigurable supercomputers. (i.e. Starbridge
Systems, SRC, Cray XD1). The lack of high-speed IO and
infrastructure (compilers, libraries) to support general-
purpose supercomputer applications, including legacy codes
are typical of this early generation. However, this situation
is rapidly changing with the latest generation of

reconfigurable supercomputers and the FPGAs they use.
DRC Computer, Xtreme Data and Xilinx in collaboration
with Intel provide modules with the latest FPGAs which fit
in microprocessor sockets and use the same high-speed
communications link. Cray selected DRC’s module, Fig. 4,
to accelerate its XT line of supercomputers.

Figure 4. DRC Virtex-4 module in Opteron socket.

FPGA and Multi-core for HPC: Accelerating HPC
applications is so critical that many alternatives have
entered the marketplace. Even though many legacy
physics-based codes are written in sequential Fortran over
30 years ago, they have remarkably survived several HPC
generations: vector (via compilers), parallel (via MPI,
OpenMP) and now the first stages of multi-core
microprocessors. Some surmise they may suffer severe
performance degradation or even require significant
rewrites to fully exploit 8 or more cores/chip. Major chip
vendors (Intel and AMD) have vigorous efforts to
accommodate accelerators, with their primary focus on
FPGAs as a way to regain performance. As multi-core
microprocessors face looming power, cooling, size and IO
challenges, FPGAs are increasingly attractive.
Accelerator Options: Three other accelerator options are
available to HPC architects: Cell (IBM), Graphics (GPUs)
and Array (ClearSpeed) processors. Like FPGAs, Cell and
GPUs have vast commercial markets (video games and
graphics) driving down costs, promoting competition and
stimulating advances making them increasingly attractive to
HPC. Array processors, however, are custom devices

requiring amortization over relatively few users. GPUs
require significant power/cooling and have complex
programming and data precision issues to solve before they
can enter the HPC market. Coding the 8+1 Cell processors
is likely to be considerably more difficult than
programming FPGAs in VHDL or Verilog, which already
has a large user base. As FPGA hardware advances, tools/
software are simplifying their use for HPC: Viva, MitrionC,
& Xilinx’s CHiMPS (all discussed later) as well as
DSPlogic, ImpulseC, Celoxica, Aldec, and, others. The
authors are testing CHiMPS for HPC applications.

Several FPGA Programming tools:

1. VHDL/Verilog: Although difficult and time-
consuming for HPC programmers to learn and use due to
coding requirements for esoteric details including timing
signals and pinouts, VHDL should not be cast aside, but
rather, should be used as the performance “gold standard”
for other tools to be compared with. VHDL/Verilog
algorithms may require months or even years to code and
optimize, and then extensive rewriting when the next
generation FPGA chip appears. This is because it is often
programmed and tweaked by the circuit designer to be so
close to the specific FPGA hardware. Since FPGA origins
are with circuit designers, it is no accident that the vast
majority of FPGA applications are written by circuit
designers in VHDL or Verilog and/or using VHDL libraries
or cores. Cores is the terminology used for the concept of a
function written in VHDL or Verilog which is of such
wide-scale interest and application that is is made available
to directly load on the “core” of fabric of an FPGA. Such
cores are available for a myriad of functions, including
Floating Point arithmetic, Digital Signal Processing, FFTs,
Hypertransport communication etc.

2. Viva (Starbridge Systems): A VHDL/Verilog
alternative to program FPGAs is Viva [4], a graphical icon-
based tool shown on the left of Fig. 5 and used at NASA.

Figure 5. 3D Graphical Viva &1D MitrionC 1D

Similar to Labview, Viva allows FPGA users to write/run
scientific applications by avoiding the esoteric digital logic
timing and pinout issues that require much attention in
VHDL/Verilog. A free trial copy may be downloaded and
run on a Windows or Unix PC. Programming FPGAs in
Viva is a two-step process, the first step is creating your
program graphically on a PC. This allows debugging and

algorithm checkout to be performed on a PC before
beginning step 2, the place and route synthesis on the
FPGA system. With no knowledge of VHDL/Verilog, all
the science and engineering algorithms shown in Fig 6.
were developed and run on the Starbridge Systems HC-36
with up to 10 VirtexII-6000 FPGAs. Viva’s logical,
intuitive options made it easy to learn and use, even for
college and high school students working with the author.
MPI and Viva were used by the author to teach a graduate
parallel programming course. The students became
proficient in both MPI and Viva (with similar learning
times) and used both to complete a series of identical
linear algebra/matrix assignments. Viva was marginally
preferred over MPI by most graduate students. The most
challenging algorithms developed (Fig. 6) were the cordic

Figure 6. Viva algorithms developed/run.

algorithm (for transcendental functions), matrix equation
solvers, structural design/optimization and solution of the
traveling salesman problem. The typical speedup
observed for these applications on Starbridge’s HC-36 was
5-7X over the HC-36 microprocessor. Although the Viva
experience was favorable, Starbridge’s HC-36 slow PCIX
bus linking FPGAs to user data restricted the size and class
of applications (minimal I/O) that could achieve high
performance. This issue is being addressed by Starbridge
and other 2nd generation reconfigurable supercomputer
developers. A Viva strength is that step 2 (place & route)
is “hands off” so HPC users can focus on developing/
debugging algorithms. The algorithms shown in Fig. 6
were performed on single FPGAs assigned to different
users (on the same network). Viva’s ability to run on
multiple FPGAs was also demonstrated.

3. MitrionC: Another innovative approach for HPC users
to program FPGAs without VHDL/Verilog (or the circuit
design skills they require), is provided by Mitrionics.
Users program the so-called “Mitrion Virtual Processor”
in MitrionC [5], with C additions for FPGA memory and
data access. MitrionC, like Viva is free to download. Step
1 (major part used to develop algorithms) is run on a
PC/Mac (Windows/Linux/ MacOSX). Step 2, initially was
complex/esoteric on Cray XD1 systems, but is now
improved. The author’s recent experience with Mitrion
unrolled BLAST [5] genome matching code (1200 lines of

Mitrion C calling a VHDL hash code function) on SGI’s
RASC Virtex 4 FPGAs indicates significant FPGA

application performance. Mitrion BLAST code achieves
performance speedups of 10-16X on the Virtex 4.

Figure 7. Weather/climate code port to CHiMPS.

4. CHiMPS (Xilinx): Rounding out FPGA tools is a joint
effort Xilinx (major FPGA vendor) is conducting with the
authors and others to evaluate the Xilinx’s CHiMPS [6] to
simplify porting major science/engineering applications to
FPGAs. ORNL and Xilinx scientists profiled a popular
weather/climate code (STSWM) for early CHiMPS testing
(Fig. 7). Following this first successful test, a workshop
was held this spring at Xilinx for initial CHiMPS users
aimed at simplifying porting HPC codes run on FPGA-
enabled supercomputers. A molecular dynamics open-
source test code was ported to CHiMPS in 20 minutes and
optimized in another 20 minutes. The authors are helping
Xilinx’s HPC team make CHiMPS a practical method to
accelerate HPC applications via FPGAs.

FASTA Application

FASTA [7] is used for protein: protein, DNA:DNA,
protein: translated DNA and ordered or unordered peptide
searches. It calculates similarity statistics for biologists to
determine if alignments are random or homotopic.
FASTA’s speed is attributed to the heuristic method of
observing the pattern of word hits, word-to-word matches
of a given length and marking potential matches prior to the
time-consuming Smith-Waterman search. The selected
word size controls the sensitivity and speed of the program.
The word hits returned are examined for segments,
containing clusters of nearby hits, which are investigated

for a possible match. This is accomplished in four steps
described in detail [8].

1. Identify regions of highest density in each sequence

comparison
2. Re-score using PAM scoring matrix, keeping top

scoring segments.
3. Apply joining threshold eliminating segments unlikely

to be alignments containing the highest score segment.
4. Use dynamic programming to optimize alignment in

narrow band of top scoring segments.

FASTA’s input format is widely used by other search tools
including BLAST [5]. The FASTA component used here
was ssearch34 [5], which calls the Smith-Waterman
algorithm [9-10], the essentials of which follow.

Smith-Waterman

Similarities between known database and query sequences
are frequently used to detect functional similarities, whether
for RNA, DNA or proteins. The Smith-Waterman dynamic
programming algorithm is used in bioinformatics for
sequence matching to detect such similarities by breaking
down the sequence alignment problem into a set of simpler
sub-problems. A table (Fig. 8) is generated with the query
sequence characters across the top and database sequence
characters down its side. The table is then filled with score

values reflecting the quality of an alignment at a specific
offset. The high score in the table indicates the best
potential to solve these sub-problems in parallel.

The score in each table cell depends on the quality of the
match between the query and database characters found at
the head of that cell’s row and column. It also depends on
the adjoining scores above, above left, and directly left. The
total alignment is calculated by solving simpler sub-
problems simultaneously for the many table score values in
parallel. Once scores for one row or column has begun,
adjoining rows or columns can be computed in parallel.

Figure 8. Example of Smith-Waterman Algorithm.

Fig. 8 shows a query sequence “ACGT…C” (top) and
a larger database sequence “ACGAAC…G” (side).
The first row and column of the Smith Waterman
table are initialized to zero. Scores are then calculated
starting in the upper left corner and moving outward.
Fig. 8 illustrates how a score of ‘6’ is calculated from
its adjacent neighbor scores above and to the left, as
well as from the fitness of the match between the ‘G’
query character and the ‘G’ database character found
at the head of its row and column.
 More important than cell calculation mechanics is
how the algorithm is broken into smaller sub-
problems and solved in parallel [8-10].

Algorithm Acceleration

An algorithm’s suitability for FPGA acceleration may
be assessed prior to writing new code by using the
following five criteria. These criteria illustrate that the
Smith-Waterman algorithm is an excellent candidate
for FPGA acceleration.
 Code Profile: Often only a small algorithm kernel can
or need be placed on an FPGA to achieve significant
acceleration. Applications with most computation in this
kernel benefit the greatest from FPGA acceleration. The
ssearch34 code profiles (Fig. 9) show 98.61% of its time is

in FLOCAL_ALIGN (optimized Smith-Waterman code) to
calculate the maximum alignment score for two sequences.
This function is an ideal candidate for acceleration,
provided it can be efficiently offloaded to FPGAs to capture
the Smith-Waterman’s inherent parallelism. Parallelism is
key to FPGA performance, and also allows designs to scale
well. It is difficult to initially assess how many Smith-
Waterman score values can be calculated in parallel, but the
design can be scaled to fit as many as possible.

Figure 9. Profile of ssearch34 Application.

 Parallelism: Due to their flexible and generic nature,
FPGA logic resources are often much slower than the
dedicated logic used to construct modern microprocessors.
To effectively compete with faster, serial microprocessors,
FPGAs must perform many operations in parallel. For the
Smith-Waterman algorithm, many alignment scores can be
calculated in parallel. Additionally, some computations of
single alignment scores can also be performed in parallel.

 Instruction Efficiency: Modern 64-bit processors
have powerful, general-purpose instruction sets. However,
for many simple application calculations (e.g. compares),
using 64-bit microprocessors is extreme overkill and
wasteful. FPGAs use the minimal logic required for given
calculations, freeing silicon to exploit parallelism. The
basic Smith-Waterman data types are character sequences.
Each character is represented by as few as two bits
drastically reducing the logic required for each calculation.

 Bandwidth, Data Localization: Bandwidth, rather
than computation speed limits the performance of many
algorithms. Bandwidth limitations can occur between the
microprocessor and the reconfigurable device, or between
the processing device and its own memory. The bandwidth
between the microprocessor and reconfigurable device
tends to be fixed and likely to be the most efficient when
large amounts of data are being transferred. Memory
bandwidth tends to increase the closer the memory is to the
microprocessor (i.e., microprocessor internal cache is
substantially faster than external cache, and faster again
than external SDRAM). The same holds true for FPGA
memory subsystems (i.e., code limited by microprocessor
SDRAM bandwidth can be similarly limited on FPGAs).
 Next, to harness parallelism, we determine if sufficient
bandwidth exists between the microprocessor and FPGA,
and between the FPGA and its memory. To calculate the
maximum alignment score, the microprocessor sends the
query sequence, the database sequence and several scoring

parameters to the FPGA. The number of scores the FPGAs
must calculate to find the maximum is the length of the
query sequence multiplied by the length of the database
sequence. For every database sequence character sent to it,
the FPGA must calculate an entire row of scores.
Calculating each score requires many computations for
every character sent to the FPGA making it unlikely that the
bandwidth available to send the sequences to the FPGA is a
bottleneck. Likewise, since the only data returned from the
FPGA is the maximum score, the bandwidth from the
FPGA to the microprocessor is also not likely a limitation.
Thus, the only limitation is how quickly the FPGA can
calculate scores.

 Sufficient Memory: The above analysis is accurate
only if the FPGA can calculate and store the entire table of
scores in one pass. This seems unlikely as it would require
the scores in an entire row of the table to be calculated and
stored in parallel. This would severely limit the size of the
query sequence. For the FPGA to calculate the table of
scores in sections, it must hold intermediate data in local
memory. To break the table of scores into vertical
segments, it must store the last column of a segment to use
in calculating the first column of the next segment. Since
only one column must be stored, the memory bandwidth
required will not likely be the limiting factor. The size of
the memory available, however, will restrict the maximum
length of the query and database sequences.

Accelerator Design

 The Smith-Waterman algorithm was implemented on
Xilinx Virtex-II Pro 50 and Virtex-4 LX160 FPGAs on
Cray XD1 systems as a linear systolic array of processing
elements (PEs). The PEs are chained in a Smith-Waterman
FPGA pipeline algorithm [7] (Fig. 10) to calculate the
maximum alignment score for two sequences.

 Figure 10. Smith-Waterman FPGA Pipeline.

 One query character is preloaded into each processing
element which then calculates scores in the column of that
query character. The database string (S1) is shifted through
the pipeline so each database character is compared to each
query character in parallel, resulting in a table of scores
such as is shown in Figure 11.

Figure 11. Smith-Waterman Parallel Scoring.

 Most of the accelerator design is building the PE pipeline.
However, added logic is required to feed the PEs, interface
the array logic to the microprocessor, and to access the
external QDR II SRAMs surrounding the FPGA.
 In addition to PEs, the design uses the internal FPGA
block RAM to store the complete sequence of query
characters. It uses the external QDR II SRAM to store
intermediate results generated when query sequences
exceed the number of processing elements. The four
external QDR II SRAMs are accessed via the Cray QDR II
Core. Internal block RAM is also used as an interface FIFO
to buffer part of the incoming database sequence. The
FIFO buffering allows the Opteron to write the database
characters to the pipeline in efficient bursts rather than one
character at a time.
 Control logic provides status and control registers for the
Opteron to write the final scores back to the Opteron’s local
DRAM memory. This is done by interfacing with the Cray
RT Core, which processes read and write requests to and
from the Opteron. The status and control registers allow
the microprocessor to set up the logic for a given alignment
as well as detect any errors that may have occurred during
its operation. When the alignment is complete, the
maximum score generated is written back to the Opteron.

OpenFPGA Benchmark Results:

 FPGA speedups were obtained for the openfpga.org 4GB
human genome benchmark using FASTA’s ssearch34. All
three OpenFPGA benchmark test cases were run and results
made available to download/compare both on openfpga.org

and ft.ornl.gov/~olaf/fpga to compare/share results with the
authors. The results of the three cases follow.

1: Micro-RNA (DNA Short Sequence Search)

This case required 3685 query sequences searching across
all 24 human genome chromosomes. To establish a baseline
time, a run was made on a single Opteron (with default
options} for all the query sequences against the first
chromosomes. Unfortunately, this baseline took 3 days to
complete. The same calculation, performed using the FPGA
version, took only 7.4 hours for a speedup of 10x. FPGA
runs were then made in parallel using MPI (Fig. 12), and
showed, as expected, excellent FPGA scaled speedup (red),

Figure 12. Cray XD1 hours to run ssearch34 on
chromosome one of the human genome.

Although promising, the authors observed the Opteron
output was extensive and varied slightly from the FPGA
output. On advice of OpenFPGA experts, two ssearch34
options were selected and used in subsequent runs. Minimal
output produced all scores for all searches:

Detailed: -Q –H –f -10 –g -3 –d 10 –b 10 –s
Minimal: -Q –H –f -10 –g -3 –d 0 –b 10 –s

2. Bacillus_anthracis DNA search: Genome matching was
performed on Virtex2, Virtex4 and Opetron Cray XD1
configurations for 18 DNA query sequences: AE017024-
AE017041 on a large database, AE016879 for two outputs:
Each query sequence (~300,000 characters) was compared
with ~5 million character database. Each run took over 3
days on the 2.2 GHz Opteron. As the FPGA Smith-
Waterman code was limited to a maximum query size of
16k characters (and maximum database size of 512k
characters), code was written to split the input query and
database into smaller sequences. Ssearch34 results were
then obtained for 16k and 8k query sizes for two output
options on two Cray XD1 systems (ORNL’s Tiger-Virtex-II
Pro 50 and Cray’s Pacific-Virtex4 LX160) and compared
with Opteron to determine FPGA speedups (Figs. 13-14).
Figures 13-14 (blue/red) with detailed alignment sequence
output show Virtex2/Virtex4 speedups to 29X/43X (1.8/3.9
standard deviation). Reduced output (yellow/ green)
increased speedups to 50X/ 100X (0.16/0.13 standard
deviation) with 16k queries slightly faster than 8k. Output
IO (performed by the Opteron) was small for the Opteron’s
75-hour solution time, so it was not optimized. However,
reducing the additional output gave significant speedups up
to 100X, but only minor reductions on the Opteron.

Figure 13. Virtex-II Pro 50 FPGA speedup.

Figure 14. Virtex-4 LX160 speedup.

Analysis: 3X more gates (128 SWPEs) on the Virtex-4
LX160 can run 3X more algorithm copies in parallel than
the Virtex-II Pro 50 with 48 SWPEs). With this added logic
area, it runs faster despite its 125MHz clock (140MHz for
Virtex-II Pro 50) required for signals to travel across the
FPGA. Code optimization would likely double the FPGA
performance to 200X. Just as the original 100 MHz Virtex
II algorithm was increased to 140 MHz, similar Virtex4
optimization is also possible.

Query and Database Sizes: Speedup similarity for 8k and
16k queries, prompted additional study on the impact of
query and database size on FPGA speedup. The same query
sequence and database set was run 30 more times splitting
the query sizes into sequences of length 1k, 2k, 4k, 8k, and
16k. The database was then split into sequences sizes: 16k,
32k, 64k, 128k, 256k, and 512k characters. Virtex II Pro
FPGA speedups varied from 37-50X the Opteron (Fig. 15)
for 1k-16k queries with minor variations in data size.
Larger query sizes (8k and 16k) gave better (~50X)
speedups as in Fig. 13 (100X expected for Virtex4).

Cray XD1 (Virtex2) Speedup

0.0

10.0

20.0

30.0

40.0

50.0

60.0

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Genome Sequence

F
P

G
A

 S
p

e
e
d

u
p

8k aligned 16k aligned 8k w/o align 16k w/o align

16k 32k 64k 128k 256k
512k

1k

2k

4k

8k
16k

36

38

40

42

44

46

48

50

Speedup

Data Size

Query Size

Figure 15. Speedup for Virtex-II Pro 50 FPGA.

Figure 16. Virtex-II speedup for myc, ras and src.

3: Amino Acid Search: Unlike Cases 1-2 (4-character
nucleic acid data representation), amino acids use more
than 4 characters (2-bit integers). Query sequences of 60
(myc), 189 (ras) and 351 (src) characters are compared
against the 24 human chromosomes, translated via 3 frames
into amino acids (9 queries for 24 chromosomes). FPGA
speedups (Fig. 16) for Amino acid queries (myc, ras, src) in
the openfpga.org benchmark are similar, but exhibit a much
wider variation among chromosomes (particularly src). This
variation is attributed to their longer sequence size.

Summary

An overview of FPGAs is given including experience using
several FPGA programming tools: VHDL, Viva, MitrionC
and CHiMPS. FPGA performance was evaluated using the
FASTA (ssearch34) code for comprehensive biological
DNA and amino acid sequencing on Cray XD1 computers
with both Virtex-II Pro 50 and Virtex-4 LX160 FPGAs.
Significant speedups of up to 100X over 2.2 GHz Opteron
processors were achieved, with better speedups for larger
query sizes. The speedups are clearly scalable (shown on 5
Cray XD1 FPGAs) to achieve ~500X speedup over one
Opteron. These results indicate similar speedups are likely
for acceleration modules (DRC and Xtreme data) that fit in
Opteron sockets, both on small embedded systems and Cray
XT supercomputers.

References

[1] Asanovic et al, The Landscape of Parallel Computing Research
A View from Berkeley, Tech. Rpt # UCB/EECS-2006-183 Dec 18
2006. Google EECS-2006-183

[2] Strenski, Dave, FPGA Floating Point Performance, HPCWire -
Jan 12 2007. Google Strenski wire

[3] Sobieski, J. & Storaasli, O. Computing at the Speed of
Thought, Aerospace America, Oct. 2004 p 35-38.
Google aiaa speed thought

[4] Viva Software: Google Viva Starbridge

[5] MitrionC/BLAST: Google Mitrion BLAST

[6] Bennett, Dave: An FPGA-oriented target language for HLL
compilation, RSSI ’06, NCSA, UIUC. Google Bennett RSSI06

[7] FASTA Sequence Comparison Code: fasta.bioch.virginia.edu

[8] Sternberg, M. (Ed.), Protein Structure Prediction: A Practical
Approach, Chapter by Barton: Protein Sequence Alignment and
Database Scanning, Oxford University Press ISBN 0199634963.

[9] Margerm, Steve, and Maltby, Jim; Accelerating the Smith-
Waterman Algorithm on the Cray XD1, Cray WP-0060406 2006.

[10] Storaasli, Olaf, Yu, Weikuan, Strenski, Dave, & Malby,Jim;
Perfomance Evaluation of FPGA-Based Biological Applications,
Cray Users Group Proceedings, Seattle WA, May 2007.
http://ft.ornl.gov/~olaf/pubs/CUG07Olaf17M07.pdf

Acknowledgment

This research was sponsored by the Laboratory Directed Research
& Development Program of ORNL managed by UT-Battelle for
the U. S. Department of Energy on Contract.DEAC0500OR22725.
The U.S. Government retains a non-exclusive, royalty-free license
to publish or copy the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

Amino Acid

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 5 9 13 17 21

Chromosome

F
P

G
A

 S
p

e
e

d
u

p

myc

ras

src

