
 

Exploring Accelerating Science Applications with FPGAs 
 
 

Olaf O. Storaasli 
Oak Ridge National Laboratory 

Olaf@ornl.gov 

Dave Strenski 
Cray Inc. 

Stren@cray.com  
 

 
Abstract 

 
    FPGA hardware and tools (VHDL, Viva, MitrionC and 
CHiMPS) are described.  FPGA performance is evaluated 
on two Cray XD1 systems (Virtex-II Pro 50 and Virtex-4 
LX160) for human genome (DNA and protein) sequence 
comparisons for a computational biology code (FASTA). 
Scalable FPGA speedups of 50X (Virtex-II) and 100X 
(Virtex-4) over a 2.2 GHz Opteron were achieved. Coding 
and IO issues faced for human genome data are described. 
 
Keywords: FPGA, reconfigurable, DNA, RNA, Smith-
Waterman, Cray, FASTA, XD1, Virtex, OpenFPGA 
 
Introduction 
 
    This paper describes Field-Programmable Gate Arrays 
(FPGAs), several tools used to program them and how 
100X speedup was achieved for a science application.  
 
   Remarkable innovations in computer technology [1-2] are 
fulfilling NASA future projections [3] for faster science and 
engineering computations. One innovation in the forefront 
is to harness FPGAs to accelerate High-Performance 
Computing (HPC) applications by one or more orders of 
magnitude over traditional microprocessors. FPGAs were 
invented in 1984 by Ross Freeman, co-founder of Xilinx 
Inc. FPGAs are extremely flexible and dominated by 
interconnections to thousands of embedded functions (Fig. 
1. left) like adders, multipliers, memory, and logic slices 
(Fig. 2). They perform high-speed computations and 
communications (e.g., Hypertransport) in parallel via digital 
logic: LookUp Tables (LUTs), Registers, RAM, etc. Unlike 
“fixed” microprocessors, FPGA’s are reconfigurable “on 
the fly” by users in the “field”, thus, “field programmable”. 
    The Virtex-4 is available with one or more PowerPC 
(PPC) processors on the chip (Fig 1. right).  The rapidly 
growing (15-20%/year) $2B FPGA market (focused on the 
high-volume communications) is dominated by Xilinx and 
Altera. Aerospace and High-Performance Embedded 
Computing (HPEC) users are rapidly expanding their 
FPGA use. Although HPC sales (< 1%) are small, FPGA 
designers are open to HPC requirements for their next 
generation designs. 

 

Figure 1. Virtex-4 FPGA with PPCs, memory, I/O (rt) 
 

 
Figure 2. Virtex-4 FPGA logic slice: LUTs, RAM... 

 
FPGA Characteristics: FPGA layout is extremely 
regular compared to microprocessors, simplifying 
fabrication, and allowing FPGAs to be among the first to 
reduce feature sizes (90nm => 65nm => 45nm). For space 
and flight use, this regularity and triply-redundant code, 
limits radiation damage (i.e. NASA Mars Rovers).  At each 
clock cycle, FPGA algorithms (when coded to maximize 
the number of parallel operations) use nearly 100% of their 
silicon, compared to less efficient microprocessors which 
use < 2% of their silicon (while drawing 10x FPGA power 
to perform only one or two operations). 
 



 

Figure 3. FPGA Characteristics: Logic Cell and clock speed growth, Computation and bandwidth speeds. 
  

Figure 3 shows several key FPGA characteristics. Unlike 
microprocessors, FPGAs continue to advance at Moore’s 
Law rate and have far to go before reaching logic cell and 
speed limits (Fig. 3., left). FPGA clock speeds (often 100-
200 MHz) have far to go before facing heating issues that 
drove microprocessors to multi-core chips with reduced 
clock speeds. When FPGA applications are programmed to 
maximize parallelism, their computation speed far exceeds 
that of microprocessors (Fig. 3., right).  Being high-speed 
communications devices, the memory and IO bandwidths 
also significantly exceed those of microprocessors (Fig. 3). 
 
    FPGA Coding: As FPGAs were developed by logic 
designers, they are traditionally programmed using circuit 
design languages such as VHDL and Verilog. These 
languages require the knowledge and training of a logic 
designer, take months to learn and far longer to code 
efficiently. Even once this skill is acquired, VHDL or 
Verilog coding is extremely arduous, taking months to 
develop early prototypes and often years to perfect and 
optimize. FPGA code development, unlike HPC compilers, 
is greatly slowed by the additional lengthy steps required to 
synthesize, place and route the circuit. 
    Once the time is taken to code applications in VHDL, its 
FPGA performance is excellent.  In particular, applications 
using basic integer or logic operations (compare, add, 
multiply) such as DNA sequence comparisons, 
cryptography or chess logic, run extremely well on FPGAs. 
As floating point and double-precision applications rapidly 
exhausted the number of slices available on early FPGAs, 
they were often avoided for high-precision calculations.  
However, this situation has changed for current Xilinx 
FPGAs (Virtex-4 and Virtex-5) which have sufficient logic 
to fit about 80 64-bit multiply units [2].   
    While early FPGAs had sufficient capability to be well 
suited for special-purpose HPEC, their use for general-
purpose HPC was initially restricted to a first-generation of 
low-end reconfigurable supercomputers. (i.e. Starbridge 
Systems, SRC, Cray XD1). The lack of high-speed IO and 
infrastructure (compilers, libraries) to support general-
purpose supercomputer applications, including legacy codes 
are typical of this early generation. However, this situation 
is rapidly changing with the latest generation of 

reconfigurable supercomputers and the FPGAs they use. 
DRC Computer, Xtreme Data and Xilinx in collaboration 
with Intel provide modules with the latest FPGAs which fit 
in microprocessor sockets and use the same high-speed 
communications link.  Cray selected DRC’s module, Fig. 4, 
to accelerate its XT line of supercomputers. 
 

 

Figure 4. DRC Virtex-4 module in Opteron socket. 
 

FPGA and Multi-core for HPC: Accelerating HPC 
applications is so critical that many alternatives have 
entered the marketplace.   Even though many legacy 
physics-based codes are written in sequential Fortran over 
30 years ago, they have remarkably survived several HPC 
generations: vector (via compilers), parallel (via MPI, 
OpenMP) and now the first stages of multi-core 
microprocessors. Some surmise they may suffer severe 
performance degradation or even require significant 
rewrites to fully exploit 8 or more cores/chip. Major chip 
vendors (Intel and AMD) have vigorous efforts to 
accommodate accelerators, with their primary focus on 
FPGAs as a way to regain performance. As multi-core 
microprocessors face looming power, cooling, size and IO 
challenges, FPGAs are increasingly attractive. 
Accelerator Options: Three other accelerator options are 
available to HPC architects: Cell (IBM), Graphics (GPUs) 
and Array (ClearSpeed) processors. Like FPGAs, Cell and 
GPUs have vast commercial markets (video games and 
graphics) driving down costs, promoting competition and 
stimulating advances making them increasingly attractive to 
HPC.  Array processors, however, are custom devices 



 

requiring amortization over relatively few users. GPUs 
require significant power/cooling and have complex 
programming and data precision issues to solve before they 
can enter the HPC market.  Coding the 8+1 Cell processors 
is likely to be considerably more difficult than 
programming FPGAs in VHDL or Verilog, which already 
has a large user base.  As FPGA hardware advances, tools/ 
software are simplifying their use for HPC: Viva, MitrionC, 
& Xilinx’s CHiMPS (all discussed later) as well as 
DSPlogic, ImpulseC, Celoxica, Aldec, and, others. The 
authors are testing CHiMPS for HPC applications.  
 
Several FPGA Programming tools: 
 
1. VHDL/Verilog: Although difficult and time-
consuming for HPC programmers to learn and use due to 
coding requirements for esoteric details including timing 
signals and pinouts, VHDL should not be cast aside, but 
rather, should be used as the performance “gold standard” 
for other tools to be compared with. VHDL/Verilog 
algorithms may require months or even years to code and 
optimize, and then extensive rewriting when the next 
generation FPGA chip appears.  This is because it is often 
programmed and tweaked by the circuit designer to be so 
close to the specific FPGA hardware.  Since FPGA origins 
are with circuit designers, it is no accident that the vast 
majority of FPGA applications are written by circuit 
designers in VHDL or Verilog and/or using VHDL libraries 
or cores.  Cores is the terminology used for the concept of a 
function written in VHDL or Verilog which is of such 
wide-scale interest and application that is is made available 
to directly load on the “core” of fabric of an FPGA.  Such 
cores are available for a myriad of functions, including 
Floating Point arithmetic, Digital Signal Processing, FFTs, 
Hypertransport communication etc.  

2. Viva (Starbridge Systems): A VHDL/Verilog 
alternative to program FPGAs is Viva [4], a graphical icon-
based tool shown on the left of Fig. 5 and used at NASA.  

 
Figure 5. 3D Graphical Viva &1D  MitrionC 1D  

 
Similar to Labview, Viva allows FPGA users to write/run 
scientific applications by avoiding the esoteric digital logic 
timing and pinout issues that require much attention in 
VHDL/Verilog. A free trial copy may be downloaded and 
run on a Windows or Unix PC.  Programming FPGAs in 
Viva is a two-step process, the first step is creating your 
program graphically on a PC.  This allows debugging and 

algorithm checkout to be performed on a PC before 
beginning step 2, the place and route synthesis on the 
FPGA system.  With no knowledge of VHDL/Verilog, all 
the science and engineering algorithms shown in Fig 6. 
were developed and run on the Starbridge Systems HC-36 
with up to 10 VirtexII-6000 FPGAs. Viva’s logical, 
intuitive options made it easy to learn and use, even for 
college and high school students working with the author. 
MPI and Viva were used by the author to teach a graduate 
parallel programming course.  The students became 
proficient in both MPI and Viva (with similar learning 
times) and used both to complete a series of identical 
linear algebra/matrix assignments. Viva was marginally 
preferred over MPI by most graduate students. The most 
challenging algorithms developed (Fig. 6) were the cordic 
 

 
 

Figure 6.  Viva algorithms developed/run. 
 

algorithm (for transcendental functions), matrix equation 
solvers, structural design/optimization and solution of the 
traveling salesman problem.  The typical speedup 
observed for these applications on Starbridge’s HC-36 was 
5-7X over the HC-36 microprocessor. Although the Viva 
experience was favorable, Starbridge’s HC-36 slow PCIX 
bus linking FPGAs to user data restricted the size and class 
of applications (minimal I/O) that could achieve high 
performance.  This issue is being addressed by Starbridge 
and other 2nd generation reconfigurable supercomputer 
developers. A Viva strength is that step 2 (place & route) 
is “hands off” so HPC users can focus on developing/ 
debugging algorithms. The algorithms shown in Fig. 6 
were performed on single FPGAs assigned to different 
users (on the same network). Viva’s ability to run on 
multiple FPGAs was also demonstrated. 
 
3. MitrionC: Another innovative approach for HPC users 
to program FPGAs without VHDL/Verilog (or the circuit 
design skills they require), is provided by Mitrionics.  
Users program the so-called “Mitrion Virtual Processor” 
in MitrionC [5], with C additions for FPGA memory and 
data access. MitrionC, like Viva is free to download. Step 
1 (major part used to develop algorithms) is run on a 
PC/Mac (Windows/Linux/ MacOSX). Step 2, initially was 
complex/esoteric on Cray XD1 systems, but is now 
improved.  The author’s recent experience with Mitrion 
unrolled BLAST [5] genome matching code (1200 lines of 



 

Mitrion C calling a VHDL hash code function) on SGI’s 
RASC Virtex 4 FPGAs indicates significant FPGA 

application performance. Mitrion BLAST code achieves 
performance speedups of 10-16X on the Virtex 4. 

 

Figure 7. Weather/climate code port to CHiMPS. 

4. CHiMPS (Xilinx): Rounding out FPGA tools is a joint 
effort Xilinx (major FPGA vendor) is conducting with the 
authors and others to evaluate the Xilinx’s CHiMPS [6] to 
simplify porting major science/engineering applications to 
FPGAs.  ORNL and Xilinx scientists profiled a popular 
weather/climate code (STSWM) for early CHiMPS testing 
(Fig. 7).  Following this first successful test, a workshop 
was held this spring at Xilinx for initial CHiMPS users 
aimed at simplifying porting HPC codes run on FPGA-
enabled supercomputers. A molecular dynamics open-
source test code was ported to CHiMPS in 20 minutes and 
optimized in another 20 minutes. The authors are helping 
Xilinx’s HPC team make CHiMPS a practical method to 
accelerate HPC applications via FPGAs. 
 
FASTA Application 
 
FASTA [7] is used for protein: protein, DNA:DNA, 
protein: translated DNA and ordered or unordered peptide 
searches. It calculates similarity statistics for biologists to 
determine if alignments are random or homotopic.  
FASTA’s speed is attributed to the heuristic method of 
observing the pattern of word hits, word-to-word matches 
of a given length and marking potential matches prior to the 
time-consuming Smith-Waterman search.  The selected 
word size controls the sensitivity and speed of the program. 
The word hits returned are examined for segments, 
containing clusters of nearby hits, which are investigated 

for a possible match.  This is accomplished in four steps 
described in detail [8].  
 
1. Identify regions of highest density in each sequence 

comparison 
2. Re-score using PAM scoring matrix, keeping top 

scoring segments.   
3. Apply joining threshold eliminating segments unlikely 

to be alignments containing the highest score segment. 
4. Use dynamic programming to optimize alignment in 

narrow band of top scoring segments.  
 
FASTA’s input format is widely used by other search tools 
including BLAST [5]. The FASTA component used here 
was ssearch34 [5], which calls the Smith-Waterman 
algorithm [9-10], the essentials of which follow. 
 
Smith-Waterman 
 
Similarities between known database and query sequences 
are frequently used to detect functional similarities, whether 
for RNA, DNA or proteins. The Smith-Waterman dynamic 
programming algorithm is used in bioinformatics for 
sequence matching to detect such similarities by breaking 
down the sequence alignment problem into a set of simpler 
sub-problems. A table (Fig. 8) is generated with the query 
sequence characters across the top and database sequence 
characters down its side.  The table is then filled with score 



 

values reflecting the quality of an alignment at a specific 
offset.  The high score in the table indicates the best 
potential to solve these sub-problems in parallel.  
 
The score in each table cell depends on the quality of the 
match between the query and database characters found at 
the head of that cell’s row and column. It also depends on 
the adjoining scores above, above left, and directly left. The 
total alignment is calculated by solving simpler sub-
problems simultaneously for the many table score values in 
parallel.  Once scores for one row or column has begun, 
adjoining rows or columns can be computed in parallel. 
 

 
Figure 8. Example of Smith-Waterman Algorithm. 

 
Fig. 8 shows a query sequence “ACGT…C” (top) and 
a larger database sequence “ACGAAC…G” (side).  
The first row and column of the Smith Waterman 
table are initialized to zero.  Scores are then calculated 
starting in the upper left corner and moving outward. 
Fig. 8 illustrates how a score of ‘6’ is calculated from 
its adjacent neighbor scores above and to the left, as 
well as from the fitness of the match between the ‘G’ 
query character and the ‘G’ database character found 
at the head of its row and column. 
    More important than cell calculation mechanics is 
how the algorithm is broken into smaller sub-
problems and solved in parallel [8-10].  
 
Algorithm Acceleration 
 
An algorithm’s suitability for FPGA acceleration may 
be assessed prior to writing new code by using the 
following five criteria. These criteria illustrate that the 
Smith-Waterman algorithm is an excellent candidate 
for FPGA acceleration.  
    Code Profile: Often only a small algorithm kernel can 
or need be placed on an FPGA to achieve significant 
acceleration. Applications with most computation in this 
kernel benefit the greatest from FPGA acceleration. The 
ssearch34 code profiles (Fig. 9) show 98.61% of its time is 

in FLOCAL_ALIGN (optimized Smith-Waterman code) to 
calculate the maximum alignment score for two sequences. 
This function is an ideal candidate for acceleration, 
provided it can be efficiently offloaded to FPGAs to capture 
the Smith-Waterman’s inherent parallelism. Parallelism is 
key to FPGA performance, and also allows designs to scale 
well.  It is difficult to initially assess how many Smith-
Waterman score values can be calculated in parallel, but the 
design can be scaled to fit as many as possible. 

 
Figure 9. Profile of ssearch34 Application. 

 
    Parallelism: Due to their flexible and generic nature, 
FPGA logic resources are often much slower than the 
dedicated logic used to construct modern microprocessors.  
To effectively compete with faster, serial microprocessors, 
FPGAs must perform many operations in parallel.  For the 
Smith-Waterman algorithm, many alignment scores can be 
calculated in parallel.  Additionally, some computations of 
single alignment scores can also be performed in parallel. 
 
    Instruction Efficiency: Modern 64-bit processors 
have powerful, general-purpose instruction sets.  However, 
for many simple application calculations (e.g. compares), 
using 64-bit microprocessors is extreme overkill and 
wasteful. FPGAs use the minimal logic required for given 
calculations, freeing silicon to exploit parallelism.  The 
basic Smith-Waterman data types are character sequences.  
Each character is represented by as few as two bits 
drastically reducing the logic required for each calculation.  
 
    Bandwidth, Data Localization: Bandwidth, rather 
than computation speed limits the performance of many 
algorithms. Bandwidth limitations can occur between the 
microprocessor and the reconfigurable device, or between 
the processing device and its own memory. The bandwidth 
between the microprocessor and reconfigurable device 
tends to be fixed and likely to be the most efficient when 
large amounts of data are being transferred.  Memory 
bandwidth tends to increase the closer the memory is to the 
microprocessor (i.e., microprocessor internal cache is 
substantially faster than external cache, and faster again 
than external SDRAM).  The same holds true for FPGA 
memory subsystems (i.e., code limited by microprocessor 
SDRAM bandwidth can be similarly limited on FPGAs).  
    Next, to harness parallelism, we determine if sufficient 
bandwidth exists between the microprocessor and FPGA, 
and between the FPGA and its memory.  To calculate the 
maximum alignment score, the microprocessor sends the 
query sequence, the database sequence and several scoring 



 

parameters to the FPGA.  The number of scores the FPGAs 
must calculate to find the maximum is the length of the 
query sequence multiplied by the length of the database 
sequence. For every database sequence character sent to it, 
the FPGA must calculate an entire row of scores. 
Calculating each score requires many computations for 
every character sent to the FPGA making it unlikely that the 
bandwidth available to send the sequences to the FPGA is a 
bottleneck.  Likewise, since the only data returned from the 
FPGA is the maximum score, the bandwidth from the 
FPGA to the microprocessor is also not likely a limitation.  
Thus, the only limitation is how quickly the FPGA can 
calculate scores.  
 
    Sufficient Memory: The above analysis is accurate 
only if the FPGA can calculate and store the entire table of 
scores in one pass.  This seems unlikely as it would require 
the scores in an entire row of the table to be calculated and 
stored in parallel.  This would severely limit the size of the 
query sequence.  For the FPGA to calculate the table of 
scores in sections, it must hold intermediate data in local 
memory.  To break the table of scores into vertical 
segments, it must store the last column of a segment to use 
in calculating the first column of the next segment. Since 
only one column must be stored, the memory bandwidth 
required will not likely be the limiting factor.  The size of 
the memory available, however, will restrict the maximum 
length of the query and database sequences.  
 
Accelerator Design  
 
    The Smith-Waterman algorithm was implemented on 
Xilinx Virtex-II Pro 50 and Virtex-4 LX160 FPGAs on 
Cray XD1 systems as a linear systolic array of processing 
elements (PEs). The PEs are chained in a Smith-Waterman 
FPGA pipeline algorithm [7] (Fig. 10) to calculate the 
maximum alignment score for two sequences.  
 

 
 
       Figure 10.  Smith-Waterman FPGA Pipeline. 
 
    One query character is preloaded into each processing 
element which then calculates scores in the column of that 
query character.  The database string (S1) is shifted through 
the pipeline so each database character is compared to each 
query character in parallel, resulting in a table of scores 
such as is shown in Figure 11.  
 

 
Figure 11. Smith-Waterman Parallel Scoring.  

 
   Most of the accelerator design is building the PE pipeline.  
However, added logic is required to feed the PEs, interface 
the array logic to the microprocessor, and to access the 
external QDR II SRAMs surrounding the FPGA. 
    In addition to PEs, the design uses the internal FPGA 
block RAM to store the complete sequence of query 
characters. It uses the external QDR II SRAM to store 
intermediate results generated when query sequences 
exceed the number of processing elements.  The four 
external QDR II SRAMs are accessed via the Cray QDR II 
Core.  Internal block RAM is also used as an interface FIFO 
to buffer part of the incoming database sequence.  The 
FIFO buffering allows the Opteron to write the database 
characters to the pipeline in efficient bursts rather than one 
character at a time.  
   Control logic provides status and control registers for the 
Opteron to write the final scores back to the Opteron’s local 
DRAM memory.  This is done by interfacing with the Cray 
RT Core, which processes read and write requests to and 
from the Opteron.  The status and control registers allow 
the microprocessor to set up the logic for a given alignment 
as well as detect any errors that may have occurred during 
its operation. When the alignment is complete, the 
maximum score generated is written back to the Opteron.  
 
OpenFPGA Benchmark Results: 
 
   FPGA speedups were obtained for the openfpga.org 4GB 
human genome benchmark using FASTA’s ssearch34. All 
three OpenFPGA benchmark test cases were run and results 
made available to download/compare both on openfpga.org 



 

and ft.ornl.gov/~olaf/fpga to compare/share results with the 
authors. The results of the three cases follow. 
 
1: Micro-RNA (DNA Short Sequence Search) 
 
This case required 3685 query sequences searching across 
all 24 human genome chromosomes. To establish a baseline 
time, a run was made on a single Opteron (with default 
options} for all the query sequences against the first 
chromosomes. Unfortunately, this baseline took 3 days to 
complete. The same calculation, performed using the FPGA 
version, took only 7.4 hours for a speedup of 10x. FPGA 
runs were then made in parallel using MPI (Fig. 12), and 
showed, as expected, excellent FPGA scaled speedup (red),  
 

 
 

Figure 12. Cray XD1 hours to run ssearch34 on 
chromosome one of the human genome. 

 
Although promising, the authors observed the Opteron 
output was extensive and varied slightly from the FPGA 
output. On advice of OpenFPGA experts, two ssearch34 
options were selected and used in subsequent runs. Minimal 
output produced all scores for all searches: 
 
Detailed: -Q –H –f -10 –g -3 –d 10 –b 10 –s  
Minimal: -Q –H –f -10 –g -3 –d  0  –b 10 –s  
 
2. Bacillus_anthracis DNA search: Genome matching was 
performed on Virtex2, Virtex4 and Opetron Cray XD1 
configurations for 18 DNA query sequences: AE017024- 
AE017041 on a large database, AE016879 for two outputs: 
Each query sequence (~300,000 characters) was compared 
with ~5 million character database.  Each run took over 3 
days on the 2.2 GHz Opteron. As the FPGA Smith-
Waterman code was limited to a maximum query size of 
16k characters (and maximum database size of 512k 
characters), code was written to split the input query and 
database into smaller sequences. Ssearch34 results were 
then obtained for 16k and 8k query sizes for two output 
options on two Cray XD1 systems (ORNL’s Tiger-Virtex-II 
Pro 50 and Cray’s Pacific-Virtex4 LX160) and compared 
with Opteron to determine FPGA speedups (Figs. 13-14). 
Figures 13-14 (blue/red) with detailed alignment sequence 
output show Virtex2/Virtex4 speedups to 29X/43X (1.8/3.9 
standard deviation). Reduced output (yellow/ green) 
increased speedups to 50X/ 100X (0.16/0.13 standard 
deviation) with 16k queries slightly faster than 8k. Output 
IO (performed by the Opteron) was small for the Opteron’s 
75-hour solution time, so it was not optimized. However, 
reducing the additional output gave significant speedups up 
to 100X, but only minor reductions on the Opteron. 
 

 

Figure 13. Virtex-II Pro 50 FPGA speedup.  
 

 
Figure 14. Virtex-4 LX160 speedup. 

 
Analysis: 3X more gates (128 SWPEs) on the Virtex-4 
LX160 can run 3X more algorithm copies in parallel than 
the Virtex-II Pro 50 with 48 SWPEs). With this added logic 
area, it runs faster despite its 125MHz clock (140MHz for 
Virtex-II Pro 50) required for signals to travel across the 
FPGA. Code optimization would likely double the FPGA 
performance to 200X. Just as the original 100 MHz Virtex 
II algorithm was increased to 140 MHz, similar Virtex4 
optimization is also possible. 
 
Query and Database Sizes: Speedup similarity for 8k and 
16k queries, prompted additional study on the impact of 
query and database size on FPGA speedup. The same query 
sequence and database set was run 30 more times splitting 
the query sizes into sequences of length 1k, 2k, 4k, 8k, and 
16k. The database was then split into sequences sizes: 16k, 
32k, 64k, 128k, 256k, and 512k characters.  Virtex II  Pro 
FPGA speedups varied from 37-50X the Opteron (Fig. 15) 
for 1k-16k queries with minor variations in data size. 
Larger query sizes (8k and 16k) gave better (~50X) 
speedups as in Fig. 13 (100X expected for Virtex4). 
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Figure 15. Speedup for Virtex-II Pro 50 FPGA.  

 

Figure 16. Virtex-II speedup for myc, ras and src. 
 
3: Amino Acid Search: Unlike Cases 1-2 (4-character 
nucleic acid data representation), amino acids use more 
than 4 characters (2-bit integers). Query sequences of 60 
(myc), 189 (ras) and 351 (src) characters are compared 
against the 24 human chromosomes, translated via 3 frames 
into amino acids (9 queries for 24 chromosomes).  FPGA 
speedups (Fig. 16) for Amino acid queries (myc, ras, src) in 
the openfpga.org benchmark are similar, but exhibit a much 
wider variation among chromosomes (particularly src). This 
variation is attributed to their longer sequence size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Summary 
 
An overview of FPGAs is given including experience using 
several FPGA programming tools: VHDL, Viva, MitrionC 
and CHiMPS.  FPGA performance was evaluated using the 
FASTA (ssearch34) code for comprehensive biological 
DNA and amino acid sequencing on Cray XD1 computers 
with both Virtex-II Pro 50 and Virtex-4 LX160 FPGAs.  
Significant speedups of up to 100X over 2.2 GHz Opteron 
processors were achieved, with better speedups for larger 
query sizes. The speedups are clearly scalable (shown on 5 
Cray XD1 FPGAs) to achieve ~500X speedup over one 
Opteron. These results indicate similar speedups are likely 
for acceleration modules (DRC and Xtreme data) that fit in 
Opteron sockets, both on small embedded systems and Cray 
XT supercomputers.  
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