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Abstract— FPGAs have established performance advantages 

over other processing technologies. Difficulties in achieving high 

design productivity counterbalance these performance 

advantages. High-level languages (HLLs) targeting FPGAs 

together with low-level core libraries have the potential to 

overcome these productivity challenges. It is desirable to possess 

an industry standard for the integration of core libraries into 

FPGA HLLs. The OpenFPGA CORELIB group is working 

towards this end. The authors present an implementation of a 

core library: A library of floating-point elementary 

transcendental functions targeted at DIME-C, an FPGA HLL, 

and Xilinx Virtex-4 FPGAs. The paper contrasts three methods of 

creating pipelined mathematical cores: Using DIME-C creation, 

using VHDL and using System Generator. Implementation 

results, comparisons with software and general conclusions about 

elementary functions on FPGAs are given. 

 
Index Terms— Field-programmable gate arrays, Floating-

point arithmetic, Reconfigurable architectures, Elementary 

function approximation 

I. INTRODUCTION 

PGA-BASED reconfigurable computers have widely 

recognised performance advantages over microprocessor-

based systems. Best recognised are their capabilities with 

regard to bit-level manipulations and integer arithmetic. High 

memory bandwidths and close coupling to input and output 

allow FPGA-based systems to offer up to orders of magnitude 

speed-up in certain application domains over traditional Von 

Neumann or Harvard stored-program architectures. The logic 

densities of FPGAs are increasing at an exponential rate and 

over recent years they have been used to implement floating-

point functionality [1],[2]. Exponential increases in logic 

density have led to crises in design productivity in 
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reconfigurable computing. Designing for early FPGAs 

essentially consisted in hand-placing logic resources. Increased 

logic densities led to the trend of designers switching to 

electronic design automation (EDA) design tools. These tools 

compiled and synthesized hardware descriptions languages 

(HDLs) to create a physical design in terms of the FPGA’s 

resources.  VHDL and Verilog are the best-known examples of 

such languages. As the logic densities of FPGAs have 

increased yet further, even the HDL/EDA approach has 

become very demanding on users. There is now scope for tools 

that allow designers to focus on the structure of their 

algorithm, tools that abstract away the production of HDL 

code that describes circuit behaviour. Several tools now exist 

that allow designers to program FPGAs using high-level 

language syntaxes such as C, C++ and FORTRAN [3]. 

Graphical or schematic-based programming environments also 

exist to develop algorithms for implementation on FPGAs. In 

order to obtain both the productivity benefits of high-level 

languages and the high-performance and low resource use of 

HDL techniques, core libraries are required. Core libraries 

permit the integration of functional units into high-level 

languages in a manner that is simple for the user. The 

OpenFPGA CORELIB effort is looking to create a standard 

for core libraries suitable for use in a range of high-level 

FPGA languages.  

 

Research has shown FPGAs to be suitable for the 

implementation of floating-point elementary functions [5-14]. 

This paper looks at the development of a math library for 

Nallatech’s high-level tool DIME-C. This library will conform 

to the CORELIB standard as and when it solidifies. 

II. HIGH-LEVEL FPGA LANGUAGES 

Using high-level languages to program FPGAs has two distinct 

motivations. One is to allow people with little or no experience 

of HDLs to transition to FPGA programming. The other is to 

make existing hardware engineers more productive and cost-

efficient 

 

There is now an active market for high-level languages (HLLs) 

that target FPGAs. We shall restrict our discussion to those 

that fit roughly into the category of C-to-VHDL compilers. C is 

the high-level syntax for the majority of FPGA HLL tools as C 

is one of the few languages that is familiar to both software 

and hardware engineers alike. The following tools can be 
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considered C-to-VHDL compilers: Nallatech’s DIME-C, 

Impulse’s Impulse-C [4], Mitrionics’ Mitrion-C, SRC’s Carte, 

Mentor Graphics’ Catapult-C, Celoxica’s Handel-C and Los 

Alamos’ Trident compiler. ANSI standards, produced in 1989 

and 1999 define the C programming language. The C-to-

VHDL languages that target FPGAs do not adhere to any 

standards. They all use a version of the C syntax that differs 

from the ANSI standard. Some languages, such as DIME-C, 

are faithful to a subset of the ANSI C standard. Others, such as 

Impulse-C and Handel-C are supersets of ANSI C, containing 

proprietary additions to the standard. Some syntaxes differ 

significantly from C. Mitrion C for example uses a custom 

syntax that is developed with FPGA-style parallelism in mind.  

 

All FPGA HLL tools require users to structure their algorithm 

in a manner that will result in optimal hardware structures. 

Designers must prepare the algorithm for a two-level 

compilation process. Firstly, the FPGA HLL compiler will 

create a behavioural description of the algorithm, specifying in 

exact detail how logical operations will occur in relation to 

clock cycles. This description will typically exist in some form 

of HDL. This behavioural description will then be passed to a 

second compilation process where abstract logical operations 

are assigned to FPGA logic resources, routing and pin 

mappings. This two-step compilation process is usually fully 

automatic from the perspective of the FPGA HLL designer. 

This two-step compilation process is analogous to the software 

case where a high-level language is first compiled to assembler 

and then to a binary executable. In order to obtain the best 

performance, designers must pipeline and parallelise as much 

of their algorithm as possible. The limiting constraints are the 

nature of the algorithm, the resources available on the FPGA 

and the capabilities of tool and designer combined. FPGA 

Pipelines have no theoretical depth limit and a single design 

may have multiple parallel pipelines, with depths of hundreds 

or even thousands of cycles. This, combined with other 

parallelisation techniques such as logic replication and 

concurrent scheduling of independent operations, gives FPGAs 

their vast performance potential. The approach taken to 

generate parallel and pipelined structures is a distinguishing 

factor between FPGA HLLs. Some languages require users to 

explicitly tag sections of code to pipeline or schedule in 

parallel. Others, such as Trident or DIME-C, have the 

philosophy that the tool should attempt to parallelise and 

pipeline code wherever it sees the opportunity. DIME-C also 

has certain pragmas or compiler directives that allow users to 

specify large-scale logic duplication without adding any non-

ANSI-compliant grammar to its syntax.  

 

An important feature that distinguishes FPGA HLLs from 

lower-level HDLs is their capability for handling arithmetic 

that combines different datatypes. Users can mix integer and 

floating-point computation without having to consider the 

additional logical structures that are required. These include 

conversions of operators and results. Not all FPGA HLLs have 

the same capabilities in this regard. In DIME-C, Trident and 

SRC’s Carte, support for floating-point computation is part of 

the language itself. Other languages only support floating point 

via libraries and this naturally affects how users mix datatypes. 

 

Some FPGA high-level languages are cycle accurate. They 

require users to specify the clock cycles on which operations 

are scheduled. This means that users have a more powerful 

tool at their disposal but have less abstraction from the design 

process. Users of cycle accurate languages must still describe 

the circuit behaviour that their algorithm requires. 

 

 

FPGA HLL users require a means of functionally testing their 

algorithms as they develop them in the HLL syntax. As the 

two-step hardware compilation process can take anything from 

minutes to hours, and because it can be difficult to debug an 

algorithm in hardware, debug is optimally done in software 

running on a microprocessor. Most tools offer a proprietary 

debug environment geared to accepting their variant of the C 

syntax. DIME-C code, being a subset of ANSI C standard 

code, can be compiled using a standard C compiler such as the 

GNU C Compiler (gcc).  

III. CORE LIBRARIES AND THE OPENFPGA CORELIB EFFORT 

A. Core Libraries 

 

Many of the FPGA HLL tools that are available offer the 

capability to integrate libraries of low-level cores into the 

language and instantiate them as function calls. SRC’s Carte 

environment is one such tool. DIME-C also has this capability. 

The low-level cores are blocks of logic that are designed either 

using DIME-C itself or using a more traditional HDL design 

process. The cores are described in a library descriptor file that 

gives DIME-C all the information about the file that is 

necessary for implementing the logic block as part of a greater 

logical structure. The entire mechanism is designed in such a 

way as to make the instantiation of library cores appear to the 

user as indistinguishable from a C function call in software. 

The user adds in the library descriptor file to a project in the 

same manner that they would add in a statically linked library 

file in ANSI C. The function calling prototype is found in a 

header file, as in ANSI C.   

 

Core Libraries allow users to enjoy the design productivity and 

abstraction from complexity that high-level languages offer 

while leveraging the high performance and low resource 

consumption that traditional development techniques offer. 

The cost for these clear advantages occurs in the design and 

verification of these cores themselves 

 

B. The OpenFPGA CORELIB Effort 

 

FPGA HLL tool developers are at present working together to 

form a standard for library cores that would allow them to be 

shared between FPGA HLL tools. This standard effort is being 

carried out as part of the CORELIB workgroup of the 

OpenFPGA organization [20]. This level of standardization 
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would enable the reconfigurable computing community to 

collaborate on developing libraries. These libraries would be 

suitable for use with a range of software tools and hardware 

platforms, thereby benefiting the entire community.  

 

The specific goals of this effort include the following: 

• To develop a standard for describing the interface and 

operating characteristics for cores that facilitates the 

integration of these cores within high-level programming 

language compilers and other FPGA design tools. 

• To develop a standard for libraries of cores that facilitates 

the building, distribution and integration of cores across 

tools and hardware platforms. 

• To encourage the use of these standards by compiler 

developers, core developers, universities, and other tool 

vendors. 

• To create a synergistic environment where programmers, 

and core developers can create the most effective 

implementations of applications on FPGA-based systems. 

• To promote the creation of general purpose and 

application specific core libraries for use across the 

available tools and platforms. 

There are a range of organizations that exist presently with 

similar goals to the CORELIB group. These include the 

SPIRIT consortium, opencores.org, OCP-IP and the Virtual 

Socket Interface Alliance. Although all of these organizations 

have similar goals to the CORELIB group, none of them 

provide an answer to all of CORELIB’s specific requirements, 

so there is a need for a new group.  

 

In order to integrate IP cores into a high-level language, the 

cores must be accompanied by a descriptor file that can be 

read by all of the relevant high-level tools. This descriptor file 

describes the clocking, timing, control and data properties of 

IP cores. The approach CORELIB is pursuing is to create an 

extensible markup language (XML) specification for 

representing these details. This is to be based on the Spirit 

Consortium IP-XACT format. The current status of the 

CORELIB effort is covered in greater detail in [21],   

 

C. Off-Chip Interface Cores  

 

Another potential use for core library cores is to simplify the 

interactions with the hardware resources that reside off-chip. 

These resources could include, but are not limited to: 

communication network connections, SRAM banks, DRAM 

banks, still and video cameras, analog-to-digital & digital-to-

analog converters, LVDS links and multi-gigabit transceivers. 

Typically one would need to develop firmware that interfaced 

to the off-chip resource. A user wishing to use that resource 

would then have to understand the user-facing interface to the 

firmware in order to leverage the resource. Instead the off-chip 

resource cores can be built to a standard such as CORELIB 

and integrated easily into high-level languages. This would 

permit the rapid development of complex processing systems 

using high-level languages. The I/O processing capabilities of 

FPGAs are arguably their greatest asset and this would permit 

users to leverage them without having to deal with the complex 

interactions that this usually entails. VITA 57 [22], the FPGA 

Mezzanine Card (FMC) standard is currently under 

development. VITA 57.1 defines a standard for small FPGA 

I/O modules that can be added into larger reconfigurable 

computing systems. The VITA 57.3 standard defines firmware 

drivers with standard interfaces that will facilitate the transport 

of I/O data. With the combination of FMC modules, 

CORELIB compatible firmware drivers, CORELIB processing 

cores and FPGA high-level languages one can envisage the 

rapid development of high-performance I/O processing 

systems. These systems would have an incredibly tight, low 

latency coupling to their input/output devices.   

IV. IMPLEMENTING A LOW –LEVEL MATH LIBRARY FOR USE 

IN HIGH-LEVEL TOOLS 

A. Floating-Point on FPGAs and Other Architectures 

 

FPGAs can implement a high number of GFLOPS (giga 

floating-point operations per second). They are also often 

more easily capable of implementing a high proportion of peak 

FLOPS in typical designs. This is due to their ability to 

directly implement dataflow architectures. FPGAs have 

generally been regarded as more viable as single-precision 

accelerators than they have been as double-precision 

accelerators.  

 FPGAs excel where they are used to implement operations 

for which no dedicated hardware units exist on competing 

architectures. In these cases microprocessors must carry out 

this operation via hardware operations that do exist. There is a 

class of floating-point operations that do not exist in hardware 

in modern devices. These are the elementary transcendental 

functions, e.g. exp, log, cos, sin etc. In programmable 

architectures these operations are carried out largely via the 

use of polynomial approximations, sometimes with the aid of 

look-up tables to reduce the degree of polynomial required. 

Unlike basic arithmetic operations, these functions cannot be 

pipelined on microprocessors, so the throughput for these 

functions can be relatively low when compared to FPGAs. 

 

FPGAs on the other hand allow for the implementation of 

fully-pipelined custom units. Using a mix of the LUT, register, 

block RAM and fixed-point multiplier structures present on 

the FPGA, floating-point elementary function cores can be 

created. Often these functions can be implemented without 

actually requiring the instantiation of floating-point functional 

units. The architectures implemented in this project have thus 

far been interpolated table lookups, usually some derivatives 

of Tang’s method [24]. Muller [8] provides a good overview 

of the issues involved in approximating elementary functions 

in floating-point, and this work is developed well for FPGAs 

by Detrey and de Dinechin [9-12].  
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B. Techniques of Core Creation 

 

The table below shows the math functions that have been 

implemented thus far for the DIME-C compiler and Xilinx 

FPGAs: 

 

Function Description 

expf Natural exponential  

logf Natural logarithm  

sinf Sine  

cosf Cosine 

tanf Tangent 

fabsf Returns magnitude of input 

frexpf Splits input into fractional and exponent output 

ldexpf Creates output from fractional and exponent 

inputs 

modff Splits input into integer and fractional outputs 

powf Returns input x raised to the power of input y, 

i.e. x
y
 

sqrtf Square Root 

rand Generates a random number in  

range [0,32767] 

 
TABLE 1: FUNCTIONS  IMPLEMENTED THUS FAR IN THE DIME-C MATH 

LIBRARY 

 

More details on this math library than are found here can be 

found from [5] and [7].  

 
Throughout the course of the ongoing project, a number of 

different approaches to implementing the cores have been 

taken. Initially the cores were implemented directly in a 

hardware description language (HDL), namely VHDL. Some 

of the later cores were implemented using DIME-C then 

exported to become library cores. Finally, system generator 

was investigated as a means of generating the cores. System 

Generator [23], a tool that leverages Matlab, Simulink and 

Xilinx tools, is a high-level graphical tool intended for DSP. 

Each of these three approaches had their strengths and 

weaknesses, which are detailed below. VHDL can be 

considered to be equivalent to Verilog, and DIME-C and 

System Generator could be expected to be broadly similar to 

other tools that fulfill the same roles. 
 

1) VHDL  

 

VHDL Core Creation Advantages: 

 
• VHDL is a long-established industry standard with a 

strong development ecosystem and a clear future. 

• Assuming an expert user, VHDL cores can generally 

offer the greatest performance, latency and area 

characteristics possible. 

• Library Developers can design cores to use non-

standard data types within the intermediate data 

calculations. For example, although a core may have 

floating-point inputs and outputs, all its intermediary 

calculations may be carried out using variable 

bitlength fixed-point arithmetic. 

• Cores are future-proof in the sense that any 

technology for which VHDL synthesis exists can use 

them, perhaps even without any modification. This 

means that investment of time and money into 

developing VHDL cores is less risky and dependent 

on the success of a proprietary language.  

• Library developers can acquire cores from third 

parties. End users could even source entire libraries 

from third parties. Using traditional HDLs as the 

base for core libraries allows for their use in different 

reconfigurable computing compilers.    

 
 

VHDL Core Creation Disadvantages: 

 
• Library core development is time consuming and 

error prone. The majority of library cores developed 

were fully pipelined and much time was lost dealing 

with mismatched signal delays. 

• Requires electronic design skills not possessed by the 

majority of software engineers. 

• VHDL source for complex pipelined cores can be 

difficult to interpret and modify 

 
 

2) DIME-C  

 

DIME-C Core Creation Advantages:  

 

• Users are more productive, and the result is more 

reliable  

• Simplest manner to create cores 

• Easier to understand functionality and modify cores 

• Process is more accessible in the sense that the user 

does not have to install a number of costly tools and 

get to grips with a potentially unreliable design flow 

linking several unrelated tools together.  

• Library designers can quickly create functional cores 

from existing software routines.  

• Generated library cores can be reused in other tools 

• Generating fully-pipelined cores is not more difficult 

than generating non-pipelined cores 

 
DIME-C Core Creation Disadvantages:  

 
• Increased resource consumption and lower 

performance (i.e. higher latency and lower clock 

rate) than VHDL. 

• Library Maintenance is dependent on DIME-C. 

Although application developers can use the library 

cores in standard HDL projects, they cannot easily 

modify them. The HDL produced by DIME-C is not 

easily readable by humans.  

• Library developers can only use the Boolean type 

and the datatypes present in ANSI C, that is to say 8, 
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16, 32 and 64-bit integers and single and double-

precision floating-point numbers.  

• Less control over the hardware resources used and 

the temporal scheduling of operations. 

 
3) System Generator  

 

System Generator Core Creation Advantages: 

 
• High Productivity (lower than DIME-C, but far 

higher than VHDL) 

• Relatively low resource use (lower than DIME-C, 

higher than expert VHDL) 

• Relatively high performance (higher than DIME-C, 

lower than expert VHDL) 

• Generating a pipelined structure is not more difficult 

than generating a non-pipelined structure 

• System generator suits the implementation of the 

predicated dataflow algorithms used for elementary 

function approximation 

 
System Generator Core Creation Disadvantages: 

 
• Cost of Tools. Users require to gain access to 

Simulink, Matlab, System Generator Toolbox and 

ISE, 

• Maintenance of the tool chain, integrating Matlab, 

Simulink, ISE and System Generator and their 

various updates and patches, is left to the user. 

• Some of the datatype assumptions and the lack of 

certain functional blocks mean that System Generator 

is not a perfect match for the implementation of 

elementary transcendental functions. 

V. FPGA-IMPLEMENTED TRANSCENDENTAL FUNCTIONS 

A. Single-Precision vs. Double Precision Implementations 

 

The implementation of each transcendental function must be 

considered in isolation. The minimum resources and minimum 

latency possible for a fully-pipelined core will vary depending 

on the mathematical properties of the function being 

implemented. For example, the following basic mathematical 

properties, together with those of the floating-point 

representation format, simplify the implementation of the exp, 

log, and sin cores respectively: 
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f here is the fractional part of the floating-point input x, 

preceded by its leading 1. m corresponds to the precision of 

the input floating-point number. ept, an integer, is the 

unbiased exponent of the floating-point input. Following a 

floating-to-fixed-point conversion of the input i here is the 

integer part of the input number, and f is its fractional part, 

with p and q being their respective bitwidths. In the 

implementation of the above function one exponential term 

is a table lookup and the other is obtained from a 

polynomial approximation. 
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In the physical implementation on FPGA )2log(×p  is a 

table lookup and the other term is a polynomial 

approximation.  
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x and xfix are as defined previously. xfix is split into two 

parts: input portion a that indexes a look-up table and 

input portion b serves as input to a polynomial 

approximation.  

   

For the implementation of single-precision functions, where 

inputs and results have 24 bits of fractional precision, it is 

usually sufficient to implement fixed-point arithmetic 

operations based around lower degree polynomial 

approximations (degree 2 or 3) with table sizes rarely more 

than 512 or 1024 entries. There is a tradeoff between 

polynomial degree and table lookup size. Switching from 

single-precision to double-precision function approximation 

significantly increases resource requirements. Higher degree 

polynomial approximations become necessary. For a doubling 

in approximation precision, the number of basic arithmetic 

units required typically tends to more than double. 

Furthermore, moving to higher-precision approximations will 

necessitate the use of higher-precision floating-point units, so 

as well as having more units, each one will consume a far 

greater amount of resource. As an example, the 

implementations of a single-precision and a double-precision 

logarithm core are compared: 

a) Single-Precision Logarithm vs. Double-Precision 

Logarithm 

The single precision logarithm used a similar, but simpler 

algorithm to the double-precision example. Only the double-

precision algorithm is explained here in detail. In this example, 

all multiplications are carried out in slice logic and not in 

dedicated multipliers. This is to simplify comparison between 

the two architectures. Note: when dealing with relatively large 

precision arithmetic, fixed-point additions consume nearly 

negligible resources when compared to floating-point 
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additions. On Virtex-4 a 64-bit fixed-point addition consumes 

32 slices, whereas a 64-bit floating-point addition consumes 

701 slices. For this reason, only floating-point additions are 

considered as contributing significantly to the resource total of 

the algorithm below: 
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ROM1, a look-up table, requires 2048 ×  64 bits storage = 8 

16kbit block BRAMs 

 

In the equations below, N is the number of breakpoints into 

which the range of frac is subdivided. frac is the fractional part 

of the input, together with its implied leading one. 
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Note: When targeting a particular precision, any increase or 

decrease in the look-up table size N should be balanced by a 

corresponding decrease or increase in the degree n of the 

interpolating polynomials. Equally changes in n should be 

mirrored by changes in N.  

 

If polynomial approximation p(r) is of degree n, then the block 

RAM storage required for look-up table ROM2 is  

256

)1)
2

(( +×

=

n
floorN

BRAMS            (6) 

 

 

 

n = 1 requires many thousands of BRAMs in order to be 

implemented. n = 3 seemed to be the optimum polynomial 

degree. Anything higher makes too little use of the abundant 

BRAMs and increases slice resources significantly. For 

double-precision 16 BRAMs are required for ROM2 and 8 for 

ROM1, making the resource estimate for the logarithm 

function as follows: 

 

24 BRAMs 

3 Double-Precision Additions (701 slices) 

1 Double-Precision Division (3036 slices) 

3 Double-Precision Multipliers (1238 slices) 

 

Also required are a barrel shifter, a normalization unit, 

registers and logic to connect everything up meaningfully in a 

pipelined structure with error correction and control. This 

leads to an estimated slice total of 12,000 slices.  

 

 Single Double Increase 

Exponent 

Bits 
8 11 1.375 

Fractional 

Bits 
24 53 2.21 

Slice 

Consumption 
1736 12000 6.91 

BRAM 

Consumption 
3 24 8.00 

 
TABLE 2 – COMPARISON BETWEEN SINGLE AND DOUBLE PRECISION 

LOGARITHM 

 

Implementing double-precision elementary functions requires 

significantly more resources than single precision. Part of the 

reason for this is the lack of hard-wired double-precision 

arithmetic units on the FPGA fabric. Even so, one would still 

expect a potential throughput from a high-end FPGA to be up 

to 1.5 GOPS for the double-precision case, assuming the units 

are clocked at 300MHz and 5 units are implemented on the 

FPGA. During development in this project a number of cores, 

such as the single-precision exp and log, were clocked in the 

300 MHz range on Virtex-4 FPGAs, and it is expected that 

level of performance could be attained for the double precision 

cores, though this has yet to be proven in practice.  

 

B. Faithful Rounding versus Correct Rounding 

 

Elementary transcendental functions typically have a finite, or 

at the very least countably infinite, number of inputs for which 

they issue rational results. This leaves an uncountably infinite 

number of inputs for which the results are irrational or 

transcendental. This means that they cannot be explicitly 

expressed in any form of numerical notation. Therefore, the 

overwhelming majority of outputs of the functional units 

described here are approximations to a transcendental. The 

functional units described in this paper are intended to issue 

faithfully rounded results. This means that the output of the 

functional units is one of the two rational floating-point 

numbers that bound the true transcendental result. Faithfully 

rounded results have errors in the range [0.5,1] ulps (units in 

the last place). Guaranteeing correctly-rounded results, where 

all results are the floating-point number closest to the 

underlying transcendental, is a challenge. It is known as the 

table-maker’s dilemma. Muller describes it well in his book on 
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the subject [8]. To guarantee the 0.5 ulps accuracy of correct 

rounding, experiment has shown that around ~120 bits of 

approximation accuracy are typically necessary. This 

guarantees correct rounding for the worst case in double-

precision floating point. For the microprocessor 

implementation of correct rounding, this is not a great issue. 

For the overwhelming majority of cases the microprocessor 

will be able to use a simpler algorithm. All that is required is a 

check for difficult-to-round cases, and a different algorithm to 

handle these cases when they arise. The additional time 

penalty is only paid on the occasions where a difficult-to-

round case is detected. For the pipelined dataflow structure of 

the FPGA functional unit, all possible paths through the 

algorithm must be represented in hardware. Therefore, to 

create a fully-pipelined functional unit that guaranteed 0.5 ulp 

correctly rounded results, one would have to implement the 

worst case in hardware. This means using ~120-bit precision 

floating-point units, enormous look-up tables and 

approximation polynomials of exceptionally high degree. It 

would be difficult if not impossible to fit such a structure onto 

even the largest FPGAs available today. Correctly-rounded 

results guarantee monotonicity and are perhaps the only 

practical method of creating portable numerical algorithms.  

However, mitigation strategies can be envisaged for this 

problem. One such strategy would be the implementation of 

non-correctly rounded transcendental functions that guarantee 

preservation of monotonicity, [16] explains how one might 

implement such algorithms.  

VI. RESULTS 

A. Implementation Results of the Math Library 

 

All of the results shown in table 1 are taken from physical 

synthesis reports, except where ‘*’ denotes logical synthesis 

only. The target device was a Xilinx Virtex-4 LX160 speed 

grade -10.  The DSP48s are arithmetic units on Xilinx Virtex-4 

FPGAs, used here as 18x18 multipliers. The RAMB16s are 

dual-ported 16 kbit RAMs present on the FPGA. The 

difference in the clock rate of the rand functions is determined 

by their internal architecture. rand_ms_i exactly matches the 

mingw32 rand() function. The iterative nature of this algorithm 

slows down the clock rate. To overcome this, six threads of 

this algorithm were implemented on a pipelined structure to 

create the rand() function, thereby increasing the clock rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Function Slices DSP48s RAMB16s 

Clock 

Rate 

(MHz) 

tanf 
1033

8 
48 2 130.5 

powf 3589 4 4 136.0 

cosf 5389 24 1 168.9 

sinf 3982 24 1 156.7 

frexpf 26 0 0 191.2 

ldexpf 44 0 0 134.5 

expf 1405 0 1 150.1 

logf 1736 0 3 133.5 

rand_ms 150* 0 0 106.3 

rand_ms_i 150* 0 0 90.4 

rand 475 0 0 181.0 

 
TABLE 3 – IMPLEMENTATION RESULTS OF MATH LIBRARY 

 

Comparisons between software and hardware implementations 

of the sqrtf, expf, & logf functions are now made. It is difficult 

to get access to proprietary code that would be used on 

specific microprocessors. Instead code has been taken from 

one of the many libraries for which code is publicly available, 

one developed by Jesus Calvino-Fraga and released under the 

LGPL [25].  For the exponential and logarithm functions, care 

has been taken to ensure that these are actual single-precision 

approximations, not double-precision code that has been 

adapted to produce a single-precision result. This would 

otherwise unfairly skew the result in favour of the FPGA.  

 

Although in the earlier stages of implementation log and exp 

cores clocking at around 300 MHz were developed, these were 

abandoned upon the discovery of precision errors. The next 

generation of cores was implemented focusing primarily on 

precision. It should be noted that it is possible for cores to run 

at a higher clock rate than the logic generated by the high-level 

compiler 

 

There is some justification in choosing this public code, as it is 

portable C code. It would be reasonable to expect many of the 

proprietary libraries to be microprocessor specific. This would 

make porting between microprocessors difficult.  

 

The FPGA routines compared here exist as portable VHDL, 

not specifically instantiating any resources, and only inferring 

those that one could reasonably expect to be present on all 

contemporary and future FPGAs. It is therefore considered fair 

in this case to compare them with portable C code. 

 

B. Software Performance 

 

In order to measure the software performance of these 

functions each of them will be measured in two ways. 

 

1. Executed in isolation 2
10

 times, with the average 

execution time being recorded. (SW 1) 

2. Executed as part of a greater function 2
10

 times, with 

the function’s average contribution to the overall run 

time being measured. The greater function is to be a 
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function that is pipelined when implemented in 

DIME-C. (SW 2) 

 

For our case the greater function will be based around the 

probability density function, into which each of the functions 

will be inserted. This function is chosen as being 

representative of the kind of functions present in high-

performance computing applications. This means that expf 

SW2 will consist of an execution of the probability density 

function for a single set of inputs, shown below in eqn. (7), 

with an additional, meaningless exponential operation added 

in.  

 

( )









 −
−=

2

2

2
exp

2

1

),;(

σ

µ

σ

σµ

x

n

xf

       (7) 

 

For the ‘all_funcs’ function, all of the functions under test 

were combined into a single “super function” that could be 

compared with an FPGA implementation. This simply 

consisted of each operation being executed in turn within a 

single C function call. 

 

Additionally the full probability density function, PDF, is 

implemented both in software and in hardware. 

 

C. Comparison Environment 

 

Microprocessor & ANSI-C Compiler: 

 

• 3.2 GHz Pentium D (dual-core) (90 nm process) 

• Windows XP 

• 2GB RAM 

• gcc –O3  

 

FPGA & DIME-C Compiler: 

 

• Virtex-4 SX35-10 FPGA (90 nm process)  

• All Logic Clocked at 100MHz 

 

D. Comparison Results 

 

The times shown below are the times taken for one execution 

of each function, taken as an average. 

 

HW is the time taken for a single execution of each function 

on the FPGA, with fully pipelined operation. 

 

SW 1 is the time taken for a single execution of the function in 

software, with the function operating in isolation. 

 

Note that SW 2 only measures the contribution of that 

particular function’s runtime to the total runtime of the larger 

function and not the time to run the entire function. Table 4 

below shows that the FPGA-implemented functions have 

higher performance than the microprocessor. The performance 

of the microprocessor drops when the microprocessor is 

carrying out a mix of operations, as opposed to carrying out 

the same operation repeatedly. 

 

The HW throughput is largely independent of the amount of 

logic implemented. This means that you can build up ever 

larger functions on the FPGA, while maintaining the same 

throughput. All closed-form mathematical expressions can be 

pipelined in this manner. The software throughput on the other 

hand will drop as the function builds up.  

 

 

 

 

 

 

 

Function 

HW 

Timin

g (us) 

SW 1 

Timin

g (us) 

SW 2 

Timin

g (us) 

HW/SW 1 

Speedup 

HW/SW 

2 

Speedup 

expf 0.01 0.213 0.215 21.29 21.48 

logf 0.01 0.126 0.178 12.60 17.77 

sqrtf 0.01 0.199 0.246 19.92 24.61 

all_funcs 0.01 0.625 N/A 62.50 N/A 

PDF 0.01 0.43 N/A 43.00 N/A 

 

TABLE 4 – SOFTWARE / HARDWARE PERFORMANCE COMPARISONS 

VII. CONCLUSIONS 

 

The motivations for high-level languages that target FPGAs 

have been presented. The general properties and features of 

high-level languages for FPGAs have been outlined. Specific 

reference has been made to the features of the DIME-C 

language as well as to a number of other high-level tools. Core 

libraries for use in high-level languages have been defined, 

along with their advantages. The existence and progress of a 

standards body for core libraries, the OpenFPGA CORELIB 

workgroup, has been reported. Cores that interface to off-chip 

resources and their relevance to core libraries and high-level 

languages have been presented. Reference has been made to 

the VITA-57 standardization effort. The effort to produce a 

math library for DIME-C has been outlined. Three different 

means of producing cores, via VHDL, via DIME-C and via 

System Generator have been discussed. The relative merits of 

each design approach have also been given. The greater 

resource consumption of double-precision elementary 

functions on FPGAs versus single precision was shown. 

Reference has been made to the handicap FPGAs possess in 

not having hard-wired floating-point arithmetic units. The 

complications in implementing correctly-rounded elementary 

transcendental functions on FPGA have been explained. The 

implementation results of the present incarnation of the math 

library on Virtex-4 devices were presented. Finally, the 
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performance improvements of FPGA-based implementation of 

elementary functions over a microprocessor were shown. 
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