
 1

Hardware acceleration of a Quantum Monte Carlo application

Akila Gothandaraman1, G. Lee Warren2, Gregory D. Peterson1, Robert J. Harrison3

{akila, gwarren, gdp, robert.harrison}@utk.edu
1 Department of Electrical and Computer Engineering, University of Tennessee, Knoxville

2 Department of Chemistry, University of Delaware
3Department of Chemistry, University of Tennessee, Knoxville

Abstract

We are currently exploring the use of reconfigurable
computing using Field Programmable Gate Arrays
(FPGAs) to accelerate kernels of scientific applica-
tions. Here, we present a hardware architecture tar-
geted towards the acceleration of two scientific ker-
nels in a Quantum Monte Carlo (QMC) application
applied to N-body systems. Quantum Monte Carlo
methods enable us to determine the ground-state
properties of atomic or molecular clusters. Here, we
focus on two key kernels of the QMC application: ac-
celeration of potential energy and wavefunction calcu-
lations. Our current platform consisting of a dual
processor Intel Xeon 2.4 GHz augmented with two
reconfigurable FPGA development boards provides a
3x speedup over the equivalent software only imple-
mentation. Targeting our design onto a High Per-
formance Computing (HPC) system like the Cray XD1
or XT4 platform with high gate-density FPGAs will
allow us to operate multiple instances of our design
thereby providing additional parallelism.

1. Introduction

Scientific computing is characterized by applica-
tions that have an ever-increasing demand for tremen-
dous processing power. Traditional High Performance
Computing (HPC) systems have involved the use of
supercomputers and cluster-based computing systems
to boost the performance of computationally demand-
ing scientific applications. Current HPC systems in-
corporate hardware accelerators onto their processing
nodes to speed up the critical portions of these applica-
tions. Hardware accelerators using reconfigurable
logic, such as Field Programmable Gate Arrays
(FPGAs) are now forming major components of HPC
systems to leverage the coarse-grained parallelism of
the microprocessors with the fine-grained parallelism
provided by FPGAs. These FPGA-based solutions,

presently offered by vendors like Cray (Cray-XD1
[1]), SRC Computers (MAPstations [2]), SGI systems
(SGI Reconfigurable Application Specific Computing
– RASC [3]) and DRC Computers (RPU – Reconfigur-
able Processor Unit [4]), which couple FPGAs with
high-end conventional microprocessors, are of increas-
ing interest to the computational science and engineer-
ing community. Previously, FPGAs have been used in
applications where a function in its entirety is mapped
onto reconfigurable hardware. The emerging hybrid
HPC systems allow us to partition the applications
such that critical components can be mapped onto
hardware and the remainder of the application retained
in software, thus providing significant performance
gains over an entirely software implementation running
on a general-purpose processor. FPGAs have been
used in various computational science and engineering
applications such as computational fluid dynamics [5]
and molecular dynamics simulations [6].

In our work, we apply reconfigurable computing
using FPGAs to accelerate a Quantum Monte Carlo
(QMC) chemistry application. We present a parallel
and pipelined architecture to calculate the properties of
the particles in an N-body system. We employ unique
schemes that will easily allow us to transform and in-
terpolate a given function and compute it using recon-
figurable hardware. Our design presently computes the
energies and wavefunctions over pairs of homogene-
ous or heterogeneous particles using a general interpo-
lation framework. We aim to develop a user-friendly
design framework that can be used to obtain the prop-
erties of large many-body systems and thus serve as a
useful tool for studying these systems. In our earlier
work [7], we provided preliminary results with esti-
mated speedups while accelerating the potential energy
calculation alone using FPGAs. In this work, we pro-
vide the actual speedups of the potential energy and
wavefunction kernels implemented on the FPGA ver-
sus the software implementation.

 2

The reason why the reconfigurability feature of
FPGAs is desirable in our application is because a
change in the nature (chemical identity) of the particles
(atoms) of the system requires the use of a different set
of interpolation parameters. This will also provide us
with the freedom to evaluate any function of the posi-
tion co-ordinates of particles, such as external or con-
finement potentials or custom potential energy surfaces
beyond the simple Lennard-Jones form. Hardware-
software partitioning methods [8] are critical for map-
ping a scientific application, which typically consists
of many compute-intensive kernels, onto these archi-
tectures. The kernels in our QMC application that rely
on additions, subtractions, and multiplications repre-
sent ideal candidates for implementation on present
generation FPGAs with abundant logic and embedded
hardware multipliers. It also gives us the flexibility to
retain in software, rest of the calculations or for com-
puting new properties which will not fit on our current
FPGA device. Our implementation uses fixed-point
arithmetic for all calculations, which is faster than
floating-point calculations and requires less FPGA
resources. Our error analysis shows that a 52-bit fixed-
point format can deliver an accuracy on the order of or
better than a standard double-precision floating-point
representation for our application.

Our current platform consists of a dual-processor
Intel Xeon with two Amirix Systems AP130 FPGA
development boards [9]. Each board consists of a
XC2VP30 Virtex II Pro [10] and 64 MB DDR
SDRAM and is devoted entirely to the computation of
potential energy or the wavefunction. The communica-
tion between the processor and the FPGA occurs via a
66MHz PCI interface. The Amirix control program is
used for controlling the FPGA board. The overall ap-
plication demonstrates a 3x speedup (on the second
generation V2P FPGAs) over the software only ver-
sion with no compromise in accuracy. This shows that
a substantial improvement in speedup performance can
be expected on platforms like the Cray-XD1 consisting
of processors and several high-end FPGAs over a low-
latency interconnect.

 The reminder of the paper is organized as fol-
lows. Section 2 presents a background of Monte Carlo
(MC). In Section 3, we present the related work on the
special purpose engines and hardware accelerators
developed for scientific simulations. Section 4 pro-
vides a description of the potential and wavefunction
kernels chosen for hardware acceleration. In Section 5,
we describe the building blocks of our complete MC
architecture. In Section 6, we provide the performance
results of our current implementation. In Section 7, we
offer conclusions and some directions for future re-
search.

2. Monte Carlo Background

Current parallel computing systems have provided
us the sheer computing power required to conduct
simulations of large N-body systems. These simula-
tions could be anything from simulations of quantum
systems consisting of interacting atomic or subatomic
particles to astrophysical N-body systems. The tre-
mendous processing power available today with these
sophisticated parallel systems have aided in identifying
interesting properties and phenomena in otherwise
intractable systems. Two simulation techniques widely
used in physics and physical chemistry are the Molecu-
lar Dynamics (MD) and Monte Carlo (MC) methods.
MC methods are used in chemistry to study the struc-
tural and energetic properties of clusters consisting of
a group of atoms or molecules close enough to experi-
ence interatomic or intermolecular attraction [11]. MD
simulations are of a deterministic nature and used to
simulate the classical time evolution of a system given
the initial positions and velocities of all particles in the
system. These methods use Newton’s laws of motion
to generate the successive configurations for the N-
body system. On the other hand, MC methods are sto-
chastic and rely on high quality random number gen-
erators and a Markov process to generate the configu-
rations. MC simulations are inherently parallel and
thus lend themselves well to implementation on paral-
lel computer architectures. There also exist hybrid
techniques, which switch between MC and MD tech-
niques for various parts of the simulation.

We are interested in studying the ground-state
properties of quantum many-body problems and use
Quantum Monte Carlo (QMC) methods for modeling
our N-body system. These methods can compute accu-
rately many-body quantum mechanical properties of
atomic clusters. These methods sample the N-body
quantum mechanical wavefunction for the purpose of
computing observable properties, such as potential
energy. The statistical uncertainty in the computed
properties shrinks with the square root of the number
of samples; thus accurate estimates of properties re-
quire a large number of samples. Two flavors of QMC
methods are, Diffusion Monte Carlo (DMC) and
Variational Monte Carlo (VMC). DMC is a technique
for numerically solving the many-body Schrödinger
equation and can compute properties of the exact
ground state of a bosonic quantum system. VMC
method employs a set of adjustable parameters to yield
a trial wavefunction, ()T xψ that, when optimized, best

approximates the exact wavefunction. We employ the
VMC method for our N-body simulation. Figure 1
highlights the various steps of this algorithm.

 3

REPEAT (for N iterations)

1. Select a reference configuration, (, ,)R x y z at random

2. Obtain a new configuration, 'R by adding a small ran-
dom displacement to one of the particles in the above
configuration

3. Compute the ground-state properties (energy, wave-
function, etc.) of the particles in the current configura-
tion, 'R

4. Accept or reject the present configuration using the ra-
tio of the wave function values,

2
(')

()
T

T

R
p

R

ψ
ψ

=

 If 1p ≥ , 'R is accepted. If 1p < , 'R is rejected

 and R is retained.

UNTIL finished

Figure 1. VMC algorithm

Step 1 of the algorithm consists of choosing a ref-
erence configuration, R for the system of atoms using a
Cartesian co-ordinate system. We add a small random
displacement to one of the atoms to obtain a new con-
figuration, R’ in step 2. In step 3, we compute the
properties of the particles in the configuration, R’.
Necessary properties include the local energy and the
value of the trial wavefunction. To ensure that configu-
rations are asymptotically drawn from the square of the
known trial wavefunction ()T xψ , we accept or reject

this configuration (and associated properties) by de-
termining the fraction, p in step 4. If the new position,
R’ is accepted, then we also retain the corresponding
properties, otherwise we keep the properties corre-
sponding to the original configuration, R. Steps 2-4 are
repeated until asymptotic behavior is attained (typi-
cally thousands of iterations). Additional samples
(typically millions) are then drawn to compute proper-
ties of interest. Due to the limited resources on our
target FPGA, we implement Step 3 of the algorithm
presently using reconfigurable computing. The remain-
ing steps of the algorithm are implemented in software
on the general-purpose processor. We use the software
Scalable Parallel Random Number Generator
(SPRNG) [12] to provide the random configurations to
the reconfigurable hardware in our MC simulation.

3. Related Work

First, we summarize the work related to the appli-
cation of special-purpose hardware in Monte Carlo and
Molecular Dynamics simulations. A reconfigurable
MD simulator is proposed in [6] where all of the MD
simulation tasks are mapped onto FPGAs. Reconfigur-

able hardware is also proposed in [13] where a hard-
ware-software approach is used to map specific tasks
of the MD simulation onto FPGAs and the remaining
tasks executed on general-purpose processors. Recon-
figurable computing has been used to accelerate Monte
Carlo simulations in various applications. [14] de-
scribes a random variable accelerator for Monte Carlo
simulation in finance. A hardware design has been
proposed for generating random numbers from arbi-
trary distributions and applied to a pi estimator, a
Monte Carlo integrator and a stochastic simulator for
chemical species [15]. In [16], computationally inten-
sive portions of a Monte Carlo application that simu-
lates radiative heat transfer in a 2-D chamber have
been mapped on Virtex-II and Virtex-II Pro FPGAs. A
reconfigurable Monte-Carlo clustering processor
(MCCP) is proposed in [17] where a number of MC
algorithms used in statistical physics are implemented
using reconfigurable hardware.

Previous research in accelerating scientific appli-
cations has resulted in a number of special purpose
computers namely GRAPE (Gravity Pipe) systems
[18] used to accelerate gravitational N-body simula-
tions and MD simulations. These special purpose en-
gines are used for computationally demanding long-
range force calculations. The Protein Explorer with
MDGRAPE-3 chip [19] performs the force calcula-
tions in MD simulations with potential target applica-
tions including drug design, protein analysis, and ma-
terial sciences. PRO-GRAPE [20] overcomes the in-
flexibility of ASICs and reduces the initial develop-
ment cost by using FPGAs to realize the pipeline proc-
essor.

Different schemes have been developed to provide
high-quality random numbers required in Monte Carlo
simulations. Hardware-accelerated random number
generators based on the Scalable Pseudo Random
Number Generator (SPRNG) library have been devel-
oped in [21]. [22] describes a splitting approach for
parallel random number generation for parallelizing
Monte Carlo simulations.

4. Description of kernels

Our original software QMC application computes
the ground-state properties of homogenous or hetero-
geneous atomic clusters. The two computationally in-
tensive kernels, potential energy and wavefunction
calculation are accelerated using reconfigurable hard-
ware. The numerical behavior of these functions re-
quires us to use unique transformation schemes and
then evaluate them using hardware. We describe the
techniques used to transform these functions below.

 4

4.1. Potential energy calculation

Figure 2 shows the interatomic potential as a func-
tion of distance. The N -atom potential energy func-
tion totalV is approximated as a sum of (1) / 2N N − pair

contributions given by equation 1.

 ()
N

total ij

i j

V V r
<

≈∑ (1)

The pair-wise potential energy function, ()ijV r is

characterized by an exponentially repulsive region at
small values of ijr and an attractive region at interme-

diate values of ijr that asymptotically reaches zero. We

define the following parameters: ε , the depth of the
well region and σ , the cut-off value of ijr where the

potential function equals zero. The general shape of
the potential energy function that Figure 2 depicts is
universally applicable in describing non-Coulombic
atomic or molecular interactions. However, slightly
different potential energy functions are required de-
pending on the exact chemical identities of the inter-
acting atoms. Two problems posed by the potential
energy function necessitate the use of special tech-
niques to transform the functions.

First, the potential energy is a function of the dis-
tance, ijr . At first glance, this calls for the instantiation

of an expensive square root core on the FPGA device.
However, if we rewrite each pair-wise potential

()ijV r as a function of 2
ijr , we can eliminate the need

for the square-root operation following the calculation
of the squared distance values. This is largely a cos-
metic distinction as all we have done is shift the bur-

den of taking the square root of 2
ijr inside the potential

function. This is advantageous in conjunction with a
spline-based evaluation method since we can effec-
tively pre-compute the square root by building it into
the supplied coefficients.

Second, we can observe the problematic range and
domain of this functional shape. The potential has a
finite domain and infinite range until it reaches a zero

value, at the point 2 2
ijr σ= and an infinite domain and

a finite range thereafter. We divide these two regions
with non-identical numerical behavior as regions I and
II. The original expression of equation 1 for the total
potential is now rewritten as a sum of two terms given
by equation 2. Region I is defined on the domain,

2 20 ijr σ≤ < and within region I, 2()I ijV r is positive tak-

ing on values from zero to positive infinity. This dy-
namic range is clearly undesirable as we implement all

Figure 2. Plot of potential energy

the operations using fixed-point due to space limita-
tions on our current FPGA device. Region II of the

potential is defined on the region, 2 2
ijr σ≥ and ranges

in value from zero to ε− . The finite range of the func-
tion in region II is an attractive property as it bounds
the sum in equation 2 albeit the infinite domain re-
mains a problem.

() ()

() ()total I II I ij II ij

i j I i j II

V V V V r V r
< ∈ < ∈

= + = +∑ ∑ (2)

The exponential transform used in region I is
given by equation 4. This transformation provides sev-
eral advantageous properties. Firstly, the transformed

region I potential, '
IV is restricted to take values be-

tween zero and one, inclusive. The sum of the pair-
wise potentials for region I (the first term in equation
2) can now be expressed as a product of the trans-
formed pair-wise potentials (equation 4). The relation-

ship between IV and '
IV is now given by equation 5.

Another key advantage here is that the expensive final
transformation involving the natural logarithm can
now be delegated to the host processor.

2()' 2() I ijV r

I ijV r e
−= (3)

 ' '

()

()I I ij
i j I

V V r
< ∈

= ∏ (4)

 '

()

ln ()I I I ij
i j I

V V V r
< ∈

− = = ∑ (5)

An approximate logarithmic binning scheme is
used to cope with infinite domain in region II. We first
introduce a cutoff at large distance that coincides with

the largest value of 2
ijr allowed by its fixed-precision

format. Next, we partition the whole region into
smaller regions such that the end points of each region
correspond to consecutive powers of two. Thus, the

size of each sub-region will increase stepwise with 2
ijr .

This partitioning takes advantage of the fact that the

 5

curvature of the potential is largest at smaller values of
2

ijr and asymptotically approaches zero or flattens out

at large values of 2
ijr . Finally, we partition each sub-

region into several intervals of equal size. This scheme
allows us to effectively take advantage of a logarithmic

transformation of the coordinate 2
ijr without the need

to compute base two logarithms to determine the cor-
rect set of coefficients for interpolation. We also re-
scale the region II potential by a factor of 1/ε− so
that it always takes a value between zero and one.

It is also worthwhile to point out here the many-
body effects that manifest themselves in the higher
order terms of the potential energy of a given configu-
ration. In atomic clusters, the potential energy function
can be described as the summation of two-, three- and
higher many-body terms as in equation 6.

 , , ,total i j i j k

i j i j k

V V V
< < <

= + +∑ ∑ (6)

The two-body terms, ,()i jV encompass all pairs of

particles and three-body terms, (), ,i j kV encompass all

unique sets of three particles, the number of two- and

three-body terms scales as 2N and 3N , respectively.
Often, the higher order terms are small compared to
the two-body terms and can be neglected or approxi-
mated by other means. Also for large N , it becomes
unmanageable to handle the higher many-body terms.
Thus, we will restrict the scope of our work to the fully
pair-wise (two-body) model and ignore the contribu-
tion of the higher terms, which is a reasonable physical
approximation in the study of weakly interacting
atomic clusters.

4.2. Wavefunction calculation

Figure 3 shows the general-shape of the wave-
function applicable in atomic and molecular clusters.
The wavefunction is generally taken as the product of
one-body (T1), two-body (T2) and three-body (T3)
terms as given in equation 7.

 1 2 3() () (, ,)i ij ij ik jk
i i j i j k

T r T r T r r rψ
< < <

= ∏ ∏ ∏ (7)

We can observe that the many-body effects also
result in higher-order terms here as with the case of
potential energy function. For our purposes, we ignore
the three-body correlation functions and work with the
two-body interactions to evaluate the wavefunction.
The one-body terms are unnecessary since they may be
represented by the pair-wise terms.

Squared distance

W
av

ef
un

ct
io

n

x

Region 2

Region 1

Figure 3. Plot of wavefunction

The wavefunction requires no transformation
techniques. However, we rescale the wavefunction so
that the maximum is less than 1. We use a similar re-
gion classification approach for the wavefunction con-
sisting of regions I and II. The cut-off, σ computed as
the maximum value of the wavefunction by setting its
first derivative to zero, serves as a good dividing point
so that we can use our existing binning schemes and
yet accurately approximate the function. A quadratic
polynomial interpolation will be performed on this
rescaled wavefunction. The advantage of our approach
lies in the fact that we can re-use the same hardware
developed for the energy calculations for the wave-
function. This significantly reduces our design time as
we now only need to calculate new constants and a
different set of interpolation coefficients.

5. Architecture

Figure 4 shows the overall top-level block dia-
gram of our design. The software Quantum Monte
Carlo application runs on the host processor. The Po-
tential Energy (PE) and WaveFunction (WF) calcula-
tions are performed on the FPGA. As a result, the host
must provide the inputs to the FPGA and read results
from the FPGA so that the functions implemented on
the FPGA can be integrated with the host application.
The design implemented on each FPGA consists of the
following modules: Position Memory, {PE,WF} cal-
culation engines, {PE,WF} Coefficient Memory. The
{PE, WF} engines consist of the following pipelined
components: CalcDist, CalcFunc and AccFunc.
CalcDist computes the squared distance between a
pair of atoms and sends it to the CalcFunc modules
that produces the intermediate potentials and wave-
functions every clock cycle. The AccFunc accumu-
lates these intermediates to their final values and sends
them to the host processor. The host processor scales
the results back to their original values and recon-
structs the floating-point values of the functions.

 6

Figure 4. Top-level Block diagram

5.1. Binning methods

Here we discuss the binning schemes employed in
the two regions and the memory platform used to ac-
commodate the interpolation coefficients for the two
regions.

5.1.1. Region I and II Binning Schemes

We use a quadratic polynomial interpolation on
the transformed potential and wavefunction which are
both functions of the squared distance. The schemes to
look up the interpolation coefficients are different for
the two regions due to their non-identical numerical
behavior. We divide the region I function to accom-
modate 256 bins. Determining the interpolation con-
stants for region I is straightforward and a single stage
lookup is sufficient to lookup the constants from a
table of coefficients at uniformly spaced intervals

ranging from 2 2 20 to ij ijr r σ= = . The width of each bin

is used to choose from the 256 values corresponding to
the squared distances. The bin lookup scheme for re-
gion I is shown in Figure 5. The lower 8-bits form the
address that is used to fetch the interpolation coeffi-
cients from the memory.

We employ a logarithmic binning scheme in order
to represent region II function accurately. As discussed
before, the region II function is divided into subre-
gions called regimes. In our case, we divide the region
II into 21 regimes. Each regime is divided into 64 bins
for a total of 1344 coefficients. Hence we have a total
of [256 + 21 * 64] * 3 coefficients (for quadratic poly-
nomial interpolation). A two-stage lookup procedure is
used, first to determine the regime by performing a
leading zero count and then determining the set of co-
efficients to be used in the interpolation. The recipro-
cal of the bin widths is stored eliminating the need for

a division operation. The block diagram of the first
stage of the lookup scheme for region II is shown in
Figure 6. The difference between the squared distances

and the 2σ value is used by the leading zero count
detector (LZCD) to compute the regime. The LZCD
logic is implemented using a set of three priority en-
coders (Pr1, Pr2, Pr3). Figure 7 shows the second
stage of the lookup scheme to obtain the actual set of
interpolation coefficients after the regime lookup is
complete. To compute the bin location for region II,
we require additional constants which are obtained
from memory addressed using regime. We can use the
computed address to retrieve the coefficients for re-
gion 2.

5.1.2. Memory Platform

The availability of on-chip Block RAMs
(BRAMs) on the present FPGAs allows us to store the
various parameters needed by our system. We use the
BRAMs for the following purposes: Position Mem-
ory, which stores the positions of the atoms, PE Co-
efficient Memory, which stores the interpolation
coefficients for regions I and II for potential energy
calculation, WF Coefficient Memory, which stores
the interpolation coefficients for regions I and II for
wavefunction calculation. The BRAMs used to store
the system’s configurations are dual-ported and
thereby allow simultaneous memory access to write
configurations sent by the host processor and also ac-
cess by the hardware modules to consume these con-
figurations. Presently, our hardware block is attached
to the 32-bit On-Chip Peripheral Bus (OPB) of the
target FPGA. Hence, we use a memory bank structure
consisting of dual-port BRAMs to implement the
memory platform.

Figure 5. Region I Bin lookup scheme

Figure 6. Region II bin lookup (1st stage)

 7

Figure 7. Region II bin lookup (2nd stage)

5.2. Description of pipelines

Here, we describe the details of the {PE, WF}
calculation engines. These two calculation engines are
nearly identical with the exception of the final accumu-
lation step. We use the following pipelined compo-
nents: CalcDist to compute the co-ordinate dis-
tances between the atoms, the generic CalcFunc to
compute potential and wavefunction and an AccFunc
module to accumulate the resulting values.

5.2.1. Calculate Distance (CalcDist)

The CalcDist block calculates the squared dis-
tances between pairs of atoms. The host processor
stores the R (x, y, z) configurations of atoms for every
iteration onto the off-chip memory, which are then
transferred to the on-chip Position Memory. An
address generator is used to provide read addresses to
the Position Memory to read the pair positions,
(, ,) and (, ,)i i i j j jx y z x y z every clock cycle and pro-

vide them to the distance calculation module. Given N
particles, there are N (N-1)/2 coordinate distances. The
state machine repeats the address generation for all the
N particles. The data path of the CalcDist block is
shown in Figure 8 with the latencies shown in clock
cycles. This module uses a 32-bit fixed-point represen-
tation for the positions and produces a 52-bit squared
distance value per clock cycle. The resulting squared

distances are compared to 2σ and classified as region I
or region II r2 values for the respective functions.

From Position
Memory

r2 to
CalcFunc

- x

x

x

-

-

Xj

Xi

+

+Yj

Yi

Zj

Zi

dout_xi

dout_xj

xij

yij

zij

y2
ij

x2
ij

z2
ij

x2
ij + y2

ij

z2
ij

r2
ij

dout_yi

dout_yj

dout_zi

dout_zj

1 cc
Latency, clock cycles

7 cc 1 cc 1 cc

Figure 8. CalcDist pipeline

5.2.2. Calculate Function (CalcFunc)

Figure 9 shows the CalcFunc pipeline. This ge-
neric pipeline that can compute potential and wave-
function consumes the squared distances every clock
cycle. We use the lookup schemes discussed earlier to
fetch the interpolation coefficients and a delta value
pertinent to the squared distances. These are processed
by the CalcFunc module to produce a result every
clock cycle once the pipeline is full. The latency of the
pipeline is 49 clock cycles.

5.2.3. Accumulate Function (AccFunc)

The AccFunc module accumulates the energy and
wavefunction intermediate values from the CalcFunc
pipeline. Since we interpolate the transformed poten-
tial, we accumulate the potential as a running product
in region I and running sum in region II. The trans-
formed potential in region I is no larger than unity in
value. Hence, repeated multiplication during accumu-
lation of these potential values results in a potential
that will tend to zero. In a fixed-precision register, the
appearance of leading zeros results in a loss of preci-
sion. To guarantee that we do not lose precision during
accumulation in region I, we introduce a bit shift to the
left after computing each product (if it is less than 2-1)
and incrementing an initially denormalized exponent.
To take care of overflow issues associated with an
accumulator, the region II potentials are accumulated
in a register of fixed-precision large enough to hold N
evaluations of the maximum value (1.0) of the re-
scaled potential. The results will be delivered to the
host, which removes the scaling and combines the re-
sults from region I and II to reconstruct the floating-
point value of the total potential energy.

In the case of potential function, transformation
schemes were employed which necessitated the use of
both sum and product accumulators for the respective
regions. However, we may recall that the wavefunction
did not undergo any transformation. The accumulation
step is necessary only due to the functional form taken
by the wavefunction. Hence, we bypass the region II
sum accumulator and route all the results to the region
I product accumulator.

Figure 9. CalcFunc pipeline

 8

6. Implementation and Results

The overall system consists of 2.4 GHz dual proc-
essor Intel Xeon with two AP130 boards from Amirix
Systems. The entire chemistry application runs on the
Linux based host and compiled using the GNU gcc
version 3.3.5 compiler with –O3 optimizations. The
kernels of the chemistry application are coded in
VHDL and the design synthesized using Synplicity
Synplify tools and integrated into the Xilinx tool flow.
The place and route is performed using Xilinx 7.1
ISE/EDK tools. Since we use a hardware/software
approach in our design, we only need to replace the
wavefunction and potential energy function calls in
software with the FPGA function calls. Transferring
the random configurations from the host processor to
the FPGA and the FPGA-host communication is ac-
complished through the SDRAM on the FPGA over
the 66 MHz PCI interface using the Amirix control
program. A polling-based approach is used to transfer
data and status signals through SDRAM between the
host and the FPGA. The user cores are attached to the
On-Chip Peripheral Bus (OPB) which operates at 40
MHz for the Amirix baseline platform. The PowerPC
processor initializes the interpolation coefficients.

6.1. Error Analysis

Scientific applications commonly use floating-
point representation as they allow for high precision
arithmetic and higher dynamic range compared to
fixed-point representation. The QMC software appli-
cation employs 64-bit double precision floating-point
representation. However, floating-point representation
on the hardware is more expensive and slower than
fixed-point representation. The fixed-point representa-
tion used for the squared distances fed to the pipelines
and potential and wavefunction results (prior to accu-
mulation) are shown in the Table 1. Using a fixed-
point representation allows us to save area and in-
crease the speed of operation. Since the potential and
wavefunction values are rescaled to be less than or
equal to 1, their fixed-point representations use 52 bits
after the decimal point. These representations deliver
the required accuracy for our application.

Table 1. Fixed-point formats
Parameter Fixed-point formats

 (s-signed, u-unsigned)

(, ,)x y z positions s12.20

Squared distances u27.26
Potential energy and wave-
function

s0.51

Interpolation coefficients s0.51

lo
g 2(

 A
bs

ol
ut

e
E

rr
or

)

log2(r
2)

Figure 10. Absolute error potential function

Figure 10 shows the absolute error of potential, of
the 52-bit hardware spline versus the same spline ex-
pressed in 64-bit double precision (52-bit mantissa)
floating point representation. The plot is shown on a
log (to base 2) scale so that we can equate the error
with the bits of precision. The plots show that the error
for fixed-point spline levels out at our 52-bit maximum
fixed-point limit, although the floating-point represen-
tation has smaller error for large r2 and is more precise.
Comparing our potential values to a floating-point
version, we can see that the fixed-point version accu-
rately reproduces the floating-point results over almost
the entire range. Since the squared distances in our
application are confined within 216, we can safely ig-
nore the degradation of accuracy in this poor region.

6.2. Performance

Table 2 shows the usage of resources of the PE
and WF kernels targeted to Xilinx Virtex II-Pro, VP30
on the Amirix AP130 FPGA board. Table 3 compares
the actual usage of resources (SLICEs, BRAMs, 18x18
MULTs) on the XC2VP30 and the estimated usage on
XC2VP50 present on the Cray XD1 platform and the
usage of SLICEs, BRAMs, DSPs on Virtex-4 FPGA
[23] device for the PE and WF engines. In our current
baseline platform, we are limited by available re-
sources, which prohibits realizing additional pipelines.
Each core occupies only 28% of the SLICEs on
XC2VP50, but we can fit another potential pipeline or
wavefunction pipeline to provide additional parallel-
ism. On the Virtex-4 part, we could place additional
pipelines and they would work independently using
different configurations. After deploying multiple
pipelines on these high end FPGAs, we could use the
available resources to calculate derivatives of these
functions and other related ground-state properties,
which are often of utmost importance for studying N-
body systems. Table 4 shows the execution profile

 9

(units in seconds) for the FPGA accelerated QMC ap-
plication and the software only QMC application run-
ning on an Intel Xeon, 2.4 GHz dual-processor with
the PCI FPGA boards. Our design can presently simu-
late a system of up to 4000 atoms. The simulation is
performed for 100 iterations, although increasing the
iterations reduces the statistical uncertainty in the
computed properties.

From table 4, we observe that a significant amount
of time is spent on overheads consisting of data-
processing and transfer to the FPGA over the 66 MHz
PCI. This is because we are presently using a devel-
opment board with a slow interface; use of a system
with a better communication interface could easily
provide an order of magnitude improvement. The rest
of the application consists of creating a reference con-
figuration and using SPRNG to add a random dis-
placement to the above configuration. For the current
system, we can observe a speedup of 3x over the soft-
ware only QMC application. Since we typically deal
with a large number of particles in quantum chemistry
simulations, our reconfigurable hardware implementa-
tion can provide potential speedups greater than 5x
while accelerating the potential and wavefunction ker-
nels in the absence of communication bottlenecks.
Also, we can speedup our overall application by iden-
tifying critical portions remaining that could be im-
plemented using reconfigurable hardware.

Table 2. Resource usage on AP130 VP30

Resource

type

Potential ener-
gy

(on FPGA0)

Wavefunc-
tion

(on FPGA1)

SLICEs (13696) 11386 (83%) 9920 (72%)

BRAMs (136) 100 (73%) 100 (73%)

18x18 multipliers
(136)

 85 (62%) 109 (80%)

Table 3. Resource usage (post place and
route) on Xilinx FPGAs (VP30, VP50, Virtex 4)

SLICEs
(%)

BRAMs
(%)

18x18 MULTs/
DSPs (%)

 Resource

 type

Target

FPGA
PE WF PE WF PE WF

Virtex-II Pro
XC2VP30

48 46 50 50 62 80

Virtex-II Pro

XC2VP50
(estimated)

28

27

29

29

36

47

Virtex4
XC4VFX140
(estimated)

14

11

7

7

33

33

Table 4. Execution profile of a 4000 atom
simulation over 100 iterations (in seconds)

 PE +
WF

kernels

Rest of the
application

Over-
head

Total

FPGA
accelerated
application

61.8

108.73

68.4

238.93

Software
only QMC
application

664.51

108.88

--

773.39

7. Conclusions and Future Work

We present a novel architecture to calculate pair-
wise functions of N -body systems using Quantum
Monte Carlo simulations. We have carefully parti-
tioned our software application such that the computa-
tionally intensive potential and wavefunction calcula-
tions are performed on the reconfigurable hardware
and the remaining calculations are performed on the
host processor. The design uses fixed-point representa-
tions for all values within the system thus reducing the
area and complexity compared to floating-point im-
plementation. This design allows us to compute any
function of the position co-ordinates using a general
interpolation framework. Based on the results re-
ported, we will be able to fit additional wavefunction
or potential pipelines on the next-generation FPGAs.
Presently, quadratic interpolation empirically provides
a good balance between numerical accuracy and usage
of resources. However, additional block memories
available on the current high-end FPGAs will enable
us to choose a different order of interpolation, e.g.
cubic splines to provide increased accuracy. We will
also identify possible functions from the rest of the
application which can be accelerated using FPGAs.

Partitioning the data suitably will allow us to op-
erate multiple copies of each pipeline on a single
FPGA or place copies of each pipeline on multiple
FPGAs, thus taking advantage of the coarse-grained
parallelism. We are working on extending our present
prototype platform to include multiple processing
nodes and employing a Message Passing Interface
(MPI) model for communication between the nodes.
Each processor will have its own FPGA board. Each
slave FPGA on the host processor can work on its own
set of configurations. There would be no communica-
tion required among the FPGAs themselves. We will
use MPI at the software level to co-ordinate the host
processors. With such a setup, the total speedup would
be linear in the number of FPGAs times the speedup of
a single FPGA. Following this, we will port our design
onto the Cray XD1 located at the Oak Ridge National
Laboratory. This Cray XD1 system, known as Tiger,
consists of 144 64-bit Opteron processors arranged in

 10

72 nodes of two processors each. Six of the nodes
include application acceleration processors (FPGA)
providing a tight integration of FPGA resources and
host microprocessors over the system’s high band-
width and low latency interconnect. A platform like the
Cray XD1 with multiple FPGAs and compute nodes
will allow us to place multiple copies of the calculation
pipelines, thereby maximizing the achievable perform-
ance.

Acknowledgements

This work was supported by the National Science
Foundation grant, NSF CHE-0625598, and the authors
gratefully acknowledge prior support for related work
from the University of Tennessee Science Alliance.

References

[1] Cray Inc.,
http://www.cray.com/products/xd1/index.html

[2] SRC Computers, Inc.
http://www.srccomp.com/HardwareSpecs.htm

[3] SGI, http://www.sgi.com/products/rasc/

[4] DRC Computer Corporation, ,
http://www.drccomputer.com/

[5] W. D. Smith and A. R. Schnore, “Towards an RCC-
based accelerator for computational fluid dynamics
applications,” Intl Conf on Engineering Reconfigurable
Systems and Algorithms, pp. 226-232, June 2003.

[6] N. Azizi, I. Kuon, A. Egier, A. Darabiha, P. Chow,
“Reconfigurable Molecular Dynamics Simulator,”
IEEE Intl Symp on Field-Programmable Custom Com-
puting Machines, pp. 197-206, April 2004.

[7] A. Gothandaraman, G. L. Warren, G. D. Peterson, R. J.
Harrison, “Reconfigurable Accelerator for Quantum
Monte Carlo Simulations in N-body Systems,” Super-
computing 2006.

[8] J. L. Tripp, A. A. Hanson, M. Gokhale, H. Morteveit,
“Partitioning Hardware and Software for Reconfigur-
able Supercomputing Applications: A Case Study,” Su-
percomputing 2005.

[9] Amirix, http://www.amirix.com/

[10] Virtex-II Platform FPGAs: complete data sheet,
http://direct.xilinx.com/bvdocs/publications/ds031.pdf

[11] J. Doll, D. L. Freeman, “Monte Carlo Methods in
Chemistry,” IEEE Computational Science and Engi-
neering, vol.1, issue 3, pp. 22-32, Spring 1994.

[12] The Scalable Parallel Random Number Generators
Library (SPRNG), Florida State University,
http://sprng.cs.fsu.edu/

[13] R. Scrofano, M. Gokhale, F. Trouw, V. K. Prasanna,
“A Hardware/Software Approach to Molecular Dynam-
ics on Reconfigurable Computers,” IEEE Symp on
Field-Programmable Custom Computing Machines,
2006.

[14] G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, et
al., “Reconfigurable Acceleration for Monte Carlo
based Financial Simulation,” IEEE Intl Conf on Field-
Programmable Technology, pp. 215-222, Dec 2005.

[15] J. M. McCollum, J. M. Lancaster, D. W. Bouldin and
G. D. Peterson, “Hardware acceleration of pseudo-
random number generation for simulation applica-
tions,” Proc of the 35th Annual Southeastern Sympo-
sium on System Theory, pp. 299–303, March 2003.

[16] M. Gokhale, J. Frigo, C. Ahrens, J. L. Tripp, R.
Minnich, “Monte Carlo Radiative Heat Transfer Simu-
lation on a Reconfigurable Computer,” Intl Conf on
Field-Programmable Logic and Applications, 2004.

[17] C. P. Cowen and S. Monaghan, “A reconfigurable
Monte-Carlo clustering processor (MCCP),” Proc. of
the IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM), pp. 59-65, 1994.

[18] J. Makino, “The GRAPE project,” Computing in Sci-
ence & Engineering, vol. 8, pp. 30-40, Jan.-Feb. 2006.

[19] M. Taiji, T. Narumi, Y. Ohno, “Protein Explorer: A
Petaflops Special-Purpose Computer System for Mo-
lecular Dynamics Simulations,” SC, Nov 2003.

[20] N. Nakasato, T. Hamada, “Astrophysical Hydrodynam-
ics Simulations on a Reconfigurable System,” IEEE
Symposium on Field-Programmable Custom Comput-
ing Machines, pp. 279-280, 2005.

[21] Y. Bi, G. D. Peterson, G. L. Warren and R. J. Harrison,
“Hardware Acceleration of Parallel Lagged-Fibonacci
Pseudorandom Number Generation,” Intl Conf on En-
gineering Reconfigurable Systems and Algorithms,
June 2006.

[22] Roy Wikramaratna, “Pseudo-random Number Genera-
tion for Parallel Monte Carlo – A Splitting Approach,”
SIAM News, vol. 33, Number 9, 2000.

[23] Virtex-IV FPGAs: Overview ,
 http://direct.xilinx.com/bvdocs/publications/ds112.pdf

