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Abstract 

We are currently exploring the use of reconfigurable 
computing using Field Programmable Gate Arrays 
(FPGAs) to accelerate kernels of scientific applica-
tions. Here, we present a hardware architecture tar-
geted towards the acceleration of two scientific ker-
nels in a Quantum Monte Carlo (QMC) application 
applied to N-body systems. Quantum Monte Carlo 
methods enable us to determine the ground-state 
properties of atomic or molecular clusters. Here, we 
focus on two key kernels of the QMC application: ac-
celeration of potential energy and wavefunction calcu-
lations. Our current platform consisting of a dual 
processor Intel Xeon 2.4 GHz augmented with two 
reconfigurable FPGA development boards provides a 
3x speedup over the equivalent software only imple-
mentation. Targeting our design onto a High Per-
formance Computing (HPC) system like the Cray XD1 
or XT4 platform with high gate-density FPGAs will 
allow us to operate multiple instances of our design 
thereby providing additional parallelism.  

1. Introduction 

Scientific computing is characterized by applica-
tions that have an ever-increasing demand for tremen-
dous processing power. Traditional High Performance 
Computing (HPC) systems have involved the use of 
supercomputers and cluster-based computing systems 
to boost the performance of computationally demand-
ing scientific applications. Current HPC systems in-
corporate hardware accelerators onto their processing 
nodes to speed up the critical portions of these applica-
tions. Hardware accelerators using reconfigurable 
logic, such as Field Programmable Gate Arrays 
(FPGAs) are now forming major components of HPC 
systems to leverage the coarse-grained parallelism of 
the microprocessors with the fine-grained parallelism 
provided by FPGAs. These FPGA-based solutions, 

presently offered by vendors like Cray (Cray-XD1 
[1]), SRC Computers (MAPstations [2]), SGI systems 
(SGI Reconfigurable Application Specific Computing 
– RASC [3]) and DRC Computers (RPU – Reconfigur-
able Processor Unit [4]), which couple FPGAs with 
high-end conventional microprocessors, are of increas-
ing interest to the computational science and engineer-
ing community. Previously, FPGAs have been used in 
applications where a function in its entirety is mapped 
onto reconfigurable hardware. The emerging hybrid 
HPC systems allow us to partition the applications 
such that critical components can be mapped onto 
hardware and the remainder of the application retained 
in software, thus providing significant performance 
gains over an entirely software implementation running 
on a general-purpose processor. FPGAs have been 
used in various computational science and engineering 
applications such as computational fluid dynamics [5] 
and molecular dynamics simulations [6].  

In our work, we apply reconfigurable computing 
using FPGAs to accelerate a Quantum Monte Carlo 
(QMC) chemistry application. We present a parallel 
and pipelined architecture to calculate the properties of 
the particles in an N-body system. We employ unique 
schemes that will easily allow us to transform and in-
terpolate a given function and compute it using recon-
figurable hardware. Our design presently computes the 
energies and wavefunctions over pairs of homogene-
ous or heterogeneous particles using a general interpo-
lation framework. We aim to develop a user-friendly 
design framework that can be used to obtain the prop-
erties of large many-body systems and thus serve as a 
useful tool for studying these systems. In our earlier 
work [7], we provided preliminary results with esti-
mated speedups while accelerating the potential energy 
calculation alone using FPGAs. In this work, we pro-
vide the actual speedups of the potential energy and 
wavefunction kernels implemented on the FPGA ver-
sus the software implementation.  
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The reason why the reconfigurability feature of 
FPGAs is desirable in our application is because a 
change in the nature (chemical identity) of the particles 
(atoms) of the system requires the use of a different set 
of interpolation parameters. This will also provide us 
with the freedom to evaluate any function of the posi-
tion co-ordinates of particles, such as external or con-
finement potentials or custom potential energy surfaces 
beyond the simple Lennard-Jones form. Hardware-
software partitioning methods [8] are critical for map-
ping a scientific application, which typically consists 
of many compute-intensive kernels, onto these archi-
tectures. The kernels in our QMC application that rely 
on additions, subtractions, and multiplications repre-
sent ideal candidates for implementation on present 
generation FPGAs with abundant logic and embedded 
hardware multipliers. It also gives us the flexibility to 
retain in software, rest of the calculations or for com-
puting new properties which will not fit on our current 
FPGA device. Our implementation uses fixed-point 
arithmetic for all calculations, which is faster than 
floating-point calculations and requires less FPGA 
resources. Our error analysis shows that a 52-bit fixed-
point format can deliver an accuracy on the order of or 
better than a standard double-precision floating-point 
representation for our application.  

Our current platform consists of a dual-processor 
Intel Xeon with two Amirix Systems AP130 FPGA 
development boards [9]. Each board consists of a 
XC2VP30 Virtex II Pro [10] and 64 MB DDR 
SDRAM and is devoted entirely to the computation of 
potential energy or the wavefunction. The communica-
tion between the processor and the FPGA occurs via a 
66MHz PCI interface. The Amirix control program is 
used for controlling the FPGA board. The overall ap-
plication demonstrates a 3x speedup (on the second 
generation V2P FPGAs) over the software only ver-
sion with no compromise in accuracy. This shows that 
a substantial improvement in speedup performance can 
be expected on platforms like the Cray-XD1 consisting 
of processors and several high-end FPGAs over a low-
latency interconnect.   

 The reminder of the paper is organized as fol-
lows. Section 2 presents a background of Monte Carlo 
(MC). In Section 3, we present the related work on the 
special purpose engines and hardware accelerators 
developed for scientific simulations. Section 4 pro-
vides a description of the potential and wavefunction 
kernels chosen for hardware acceleration. In Section 5, 
we describe the building blocks of our complete MC 
architecture. In Section 6, we provide the performance 
results of our current implementation. In Section 7, we 
offer conclusions and some directions for future re-
search.  

2. Monte Carlo Background 

Current parallel computing systems have provided 
us the sheer computing power required to conduct 
simulations of large N-body systems. These simula-
tions could be anything from simulations of quantum 
systems consisting of interacting atomic or subatomic 
particles to astrophysical N-body systems. The tre-
mendous processing power available today with these 
sophisticated parallel systems have aided in identifying 
interesting properties and phenomena in otherwise 
intractable systems. Two simulation techniques widely 
used in physics and physical chemistry are the Molecu-
lar Dynamics (MD) and Monte Carlo (MC) methods. 
MC methods are used in chemistry to study the struc-
tural and energetic properties of clusters consisting of 
a group of atoms or molecules close enough to experi-
ence interatomic or intermolecular attraction [11]. MD 
simulations are of a deterministic nature and used to 
simulate the classical time evolution of a system given 
the initial positions and velocities of all particles in the 
system. These methods use Newton’s laws of motion 
to generate the successive configurations for the N-
body system. On the other hand, MC methods are sto-
chastic and rely on high quality random number gen-
erators and a Markov process to generate the configu-
rations. MC simulations are inherently parallel and 
thus lend themselves well to implementation on paral-
lel computer architectures. There also exist hybrid 
techniques, which switch between MC and MD tech-
niques for various parts of the simulation. 

We are interested in studying the ground-state 
properties of quantum many-body problems and use 
Quantum Monte Carlo (QMC) methods for modeling 
our N-body system. These methods can compute accu-
rately many-body quantum mechanical properties of 
atomic clusters. These methods sample the N-body 
quantum mechanical wavefunction for the purpose of 
computing observable properties, such as potential 
energy. The statistical uncertainty in the computed 
properties shrinks with the square root of the number 
of samples; thus accurate estimates of properties re-
quire a large number of samples. Two flavors of QMC 
methods are, Diffusion Monte Carlo (DMC) and 
Variational Monte Carlo (VMC). DMC is a technique 
for numerically solving the many-body Schrödinger 
equation and can compute properties of the exact 
ground state of a bosonic quantum system. VMC 
method employs a set of adjustable parameters to yield 
a trial wavefunction, ( )T xψ that, when optimized, best 

approximates the exact wavefunction. We employ the 
VMC method for our N-body simulation. Figure 1 
highlights the various steps of this algorithm.  
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REPEAT (for N iterations) 

1. Select a reference configuration, ( , , )R x y z  at random 

2. Obtain a new configuration, 'R  by adding a small ran-
dom displacement to one of the particles in the above 
configuration 

3. Compute the ground-state properties (energy, wave-
function, etc.) of the particles in the current configura-
tion, 'R            

4. Accept or reject the present configuration using the ra-
tio of the wave function values, 

2
( ')

( )
T

T

R
p

R

ψ
ψ

=  

         If 1p ≥ , 'R  is accepted. If 1p < , 'R  is rejected   

         and R  is retained.  

UNTIL finished 

Figure 1. VMC algorithm 
 

Step 1 of the algorithm consists of choosing a ref-
erence configuration, R for the system of atoms using a 
Cartesian co-ordinate system. We add a small random 
displacement to one of the atoms to obtain a new con-
figuration, R’ in step 2. In step 3, we compute the 
properties of the particles in the configuration, R’. 
Necessary properties include the local energy and the 
value of the trial wavefunction. To ensure that configu-
rations are asymptotically drawn from the square of the 
known trial wavefunction ( )T xψ , we accept or reject 

this configuration (and associated properties) by de-
termining the fraction, p in step 4. If the new position, 
R’ is accepted, then we also retain the corresponding 
properties, otherwise we keep the properties corre-
sponding to the original configuration, R. Steps 2-4 are 
repeated until asymptotic behavior is attained (typi-
cally thousands of iterations).  Additional samples 
(typically millions) are then drawn to compute proper-
ties of interest. Due to the limited resources on our 
target FPGA, we implement Step 3 of the algorithm 
presently using reconfigurable computing. The remain-
ing steps of the algorithm are implemented in software 
on the general-purpose processor. We use the software 
Scalable Parallel Random Number Generator 
(SPRNG) [12] to provide the random configurations to 
the reconfigurable hardware in our MC simulation.  

3. Related Work 

First, we summarize the work related to the appli-
cation of special-purpose hardware in Monte Carlo and 
Molecular Dynamics simulations. A reconfigurable 
MD simulator is proposed in [6] where all of the MD 
simulation tasks are mapped onto FPGAs. Reconfigur-

able hardware is also proposed in [13] where a hard-
ware-software approach is used to map specific tasks 
of the MD simulation onto FPGAs and the remaining 
tasks executed on general-purpose processors. Recon-
figurable computing has been used to accelerate Monte 
Carlo simulations in various applications. [14] de-
scribes a random variable accelerator for Monte Carlo 
simulation in finance. A hardware design has been 
proposed for generating random numbers from arbi-
trary distributions and applied to a pi estimator, a 
Monte Carlo integrator and a stochastic simulator for 
chemical species [15]. In [16], computationally inten-
sive portions of a Monte Carlo application that simu-
lates radiative heat transfer in a 2-D chamber have 
been mapped on Virtex-II and Virtex-II Pro FPGAs. A 
reconfigurable Monte-Carlo clustering processor 
(MCCP) is proposed in [17] where a number of MC 
algorithms used in statistical physics are implemented 
using reconfigurable hardware.  

Previous research in accelerating scientific appli-
cations has resulted in a number of special purpose 
computers namely GRAPE (Gravity Pipe) systems 
[18] used to accelerate gravitational N-body simula-
tions and MD simulations. These special purpose en-
gines are used for computationally demanding long-
range force calculations. The Protein Explorer with 
MDGRAPE-3 chip [19] performs the force calcula-
tions in MD simulations with potential target applica-
tions including drug design, protein analysis, and ma-
terial sciences. PRO-GRAPE [20] overcomes the in-
flexibility of ASICs and reduces the initial develop-
ment cost by using FPGAs to realize the pipeline proc-
essor.  

Different schemes have been developed to provide 
high-quality random numbers required in Monte Carlo 
simulations. Hardware-accelerated random number 
generators based on the Scalable Pseudo Random 
Number Generator (SPRNG) library have been devel-
oped in [21]. [22] describes a splitting approach for 
parallel random number generation for parallelizing 
Monte Carlo simulations.  

4. Description of kernels 

Our original software QMC application computes 
the ground-state properties of homogenous or hetero-
geneous atomic clusters. The two computationally in-
tensive kernels, potential energy and wavefunction 
calculation are accelerated using reconfigurable hard-
ware. The numerical behavior of these functions re-
quires us to use unique transformation schemes and 
then evaluate them using hardware. We describe the 
techniques used to transform these functions below. 
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4.1. Potential energy calculation 

Figure 2 shows the interatomic potential as a func-
tion of distance. The N -atom potential energy func-
tion totalV is approximated as a sum of ( 1) / 2N N −  pair 

contributions given by equation 1.  

                 ( )
N

total ij

i j

V V r
<

≈∑                          (1) 

The pair-wise potential energy function, ( )ijV r  is 

characterized by an exponentially repulsive region at 
small values of ijr and an attractive region at interme-

diate values of ijr  that asymptotically reaches zero. We 

define the following parameters: ε , the depth of the 
well region and σ , the cut-off value of ijr where the 

potential function equals zero. The general shape of 
the potential energy function that Figure 2 depicts is 
universally applicable in describing non-Coulombic 
atomic or molecular interactions. However, slightly 
different potential energy functions are required de-
pending on the exact chemical identities of the inter-
acting atoms. Two problems posed by the potential 
energy function necessitate the use of special tech-
niques to transform the functions.  

 

First, the potential energy is a function of the dis-
tance, ijr . At first glance, this calls for the instantiation 

of an expensive square root core on the FPGA device. 
However, if we rewrite each pair-wise potential 

( )ijV r as a function of 2
ijr , we can eliminate the need 

for the square-root operation following the calculation 
of the squared distance values. This is largely a cos-
metic distinction as all we have done is shift the bur-

den of taking the square root of 2
ijr  inside the potential 

function. This is advantageous in conjunction with a 
spline-based evaluation method since we can effec-
tively pre-compute the square root by building it into 
the supplied coefficients.  

Second, we can observe the problematic range and 
domain of this functional shape. The potential has a 
finite domain and infinite range until it reaches a zero 

value, at the point 2 2
ijr σ= and an infinite domain and 

a finite range thereafter. We divide these two regions 
with non-identical numerical behavior as regions I and 
II. The original expression of equation 1 for the total 
potential is now rewritten as a sum of two terms given 
by equation 2. Region I is defined on the domain, 

2 20 ijr σ≤ < and within region I, 2( )I ijV r is positive tak-

ing on values from zero to positive infinity. This dy-
namic range is clearly undesirable as we implement all  

 

Figure 2. Plot of potential energy 

the operations using fixed-point due to space limita-
tions on our current FPGA device. Region II of the 

potential is defined on the region, 2 2
ijr σ≥ and ranges 

in value from zero to ε− . The finite range of the func-
tion in region II is an attractive property as it bounds 
the sum in equation 2 albeit the infinite domain re-
mains a problem. 

( ) ( )

( ) ( )total I II I ij II ij

i j I i j II

V V V V r V r
< ∈ < ∈

= + = +∑ ∑       (2) 

The exponential transform used in region I is 
given by equation 4. This transformation provides sev-
eral advantageous properties. Firstly, the transformed 

region I potential, '
IV  is restricted to take values be-

tween zero and one, inclusive. The sum of the pair-
wise potentials for region I (the first term in equation 
2) can now be expressed as a product of the trans-
formed pair-wise potentials (equation 4). The relation-

ship between IV  and '
IV  is now given by equation 5. 

Another key advantage here is that the expensive final 
transformation involving the natural logarithm can 
now be delegated to the host processor.  

                    
2( )' 2( ) I ijV r

I ijV r e
−=              (3) 

  ' '

( )

( )I I ij
i j I

V V r
< ∈

= ∏             (4)

   '

( )

ln ( )I I I ij
i j I

V V V r
< ∈

− = = ∑                       (5) 

An approximate logarithmic binning scheme is 
used to cope with infinite domain in region II. We first 
introduce a cutoff at large distance that coincides with 

the largest value of 2
ijr  allowed by its fixed-precision 

format. Next, we partition the whole region into 
smaller regions such that the end points of each region 
correspond to consecutive powers of two. Thus, the 

size of each sub-region will increase stepwise with 2
ijr . 

This partitioning takes advantage of the fact that the 
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curvature of the potential is largest at smaller values of 
2

ijr  and asymptotically approaches zero or flattens out 

at large values of 2
ijr . Finally, we partition each sub-

region into several intervals of equal size. This scheme 
allows us to effectively take advantage of a logarithmic 

transformation of the coordinate 2
ijr  without the need 

to compute base two logarithms to determine the cor-
rect set of coefficients for interpolation. We also re-
scale the region II potential by a factor of 1/ε−  so 
that it always takes a value between zero and one.  

It is also worthwhile to point out here the many-
body effects that manifest themselves in the higher 
order terms of the potential energy of a given configu-
ration. In atomic clusters, the potential energy function 
can be described as the summation of two-, three- and 
higher many-body terms as in equation 6.  

    , , , ....total i j i j k

i j i j k

V V V
< < <

= + +∑ ∑       (6) 

The two-body terms, ,( )i jV  encompass all pairs of 

particles and three-body terms, ( ), ,i j kV encompass all 

unique sets of three particles, the number of two- and 

three-body terms scales as 2N and 3N , respectively. 
Often, the higher order terms are small compared to 
the two-body terms and can be neglected or approxi-
mated by other means. Also for large N , it becomes 
unmanageable to handle the higher many-body terms. 
Thus, we will restrict the scope of our work to the fully 
pair-wise (two-body) model and ignore the contribu-
tion of the higher terms, which is a reasonable physical 
approximation in the study of weakly interacting 
atomic clusters. 

4.2. Wavefunction calculation 

Figure 3 shows the general-shape of the wave-
function applicable in atomic and molecular clusters.  
The wavefunction is generally taken as the product of 
one-body (T1), two-body (T2) and three-body (T3) 
terms as given in equation 7.  

    1 2 3( ) ( ) ( , , )i ij ij ik jk
i i j i j k

T r T r T r r rψ
< < <

= ∏ ∏ ∏         (7) 

We can observe that the many-body effects also 
result in higher-order terms here as with the case of 
potential energy function. For our purposes, we ignore 
the three-body correlation functions and work with the 
two-body interactions to evaluate the wavefunction. 
The one-body terms are unnecessary since they may be 
represented by the pair-wise terms.  

Squared distance

W
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x

Region 2

Region 1

 
Figure 3. Plot of wavefunction 

The wavefunction requires no transformation 
techniques. However, we rescale the wavefunction so 
that the maximum is less than 1. We use a similar re-
gion classification approach for the wavefunction con-
sisting of regions I and II. The cut-off, σ  computed as 
the maximum value of the wavefunction by setting its 
first derivative to zero, serves as a good dividing point 
so that we can use our existing binning schemes and 
yet accurately approximate the function. A quadratic 
polynomial interpolation will be performed on this 
rescaled wavefunction. The advantage of our approach 
lies in the fact that we can re-use the same hardware 
developed for the energy calculations for the wave-
function. This significantly reduces our design time as 
we now only need to calculate new constants and a 
different set of interpolation coefficients.  

5. Architecture 

Figure 4 shows the overall top-level block dia-
gram of our design. The software Quantum Monte 
Carlo application runs on the host processor. The Po-
tential Energy (PE) and WaveFunction (WF) calcula-
tions are performed on the FPGA. As a result, the host 
must provide the inputs to the FPGA and read results 
from the FPGA so that the functions implemented on 
the FPGA can be integrated with the host application. 
The design implemented on each FPGA consists of the 
following modules: Position Memory, {PE,WF} cal-
culation engines, {PE,WF} Coefficient Memory. The 
{PE, WF} engines consist of the following pipelined 
components: CalcDist, CalcFunc and AccFunc. 
CalcDist computes the squared distance between a 
pair of atoms and sends it to the CalcFunc modules 
that produces the intermediate potentials and wave-
functions every clock cycle. The AccFunc accumu-
lates these intermediates to their final values and sends 
them to the host processor. The host processor scales 
the results back to their original values and recon-
structs the floating-point values of the functions.  
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Figure 4. Top-level Block diagram  

5.1. Binning methods 

Here we discuss the binning schemes employed in 
the two regions and the memory platform used to ac-
commodate the interpolation coefficients for the two 
regions.  

5.1.1. Region I and II Binning Schemes 

We use a quadratic polynomial interpolation on 
the transformed potential and wavefunction which are 
both functions of the squared distance. The schemes to 
look up the interpolation coefficients are different for 
the two regions due to their non-identical numerical 
behavior. We divide the region I function to accom-
modate 256 bins. Determining the interpolation con-
stants for region I is straightforward and a single stage 
lookup is sufficient to lookup the constants from a 
table of coefficients at uniformly spaced intervals 

ranging from 2 2 20 to ij ijr r σ= = .  The width of each bin 

is used to choose from the 256 values corresponding to 
the squared distances. The bin lookup scheme for re-
gion I is shown in Figure 5. The lower 8-bits form the 
address that is used to fetch the interpolation coeffi-
cients from the memory.   

We employ a logarithmic binning scheme in order 
to represent region II function accurately. As discussed 
before, the region II function is divided into subre-
gions called regimes. In our case, we divide the region 
II into 21 regimes. Each regime is divided into 64 bins 
for a total of 1344 coefficients. Hence we have a total 
of [256 + 21 * 64] * 3 coefficients (for quadratic poly-
nomial interpolation). A two-stage lookup procedure is 
used, first to determine the regime by performing a 
leading zero count and then determining the set of co-
efficients to be used in the interpolation. The recipro-
cal of the bin widths is stored eliminating the need for 

a division operation. The block diagram of the first 
stage of the lookup scheme for region II is shown in 
Figure 6. The difference between the squared distances 

and the 2σ value is used by the leading zero count 
detector (LZCD) to compute the regime. The LZCD 
logic is implemented using a set of three priority en-
coders (Pr1, Pr2, Pr3). Figure 7 shows the second 
stage of the lookup scheme to obtain the actual set of 
interpolation coefficients after the regime lookup is 
complete. To compute the bin location for region II, 
we require additional constants which are obtained 
from memory addressed using regime. We can use the 
computed address to retrieve the coefficients for re-
gion 2.  

5.1.2. Memory Platform 

The availability of on-chip Block RAMs 
(BRAMs) on the present FPGAs allows us to store the 
various parameters needed by our system. We use the 
BRAMs for the following purposes: Position Mem-
ory, which stores the positions of the atoms, PE Co-
efficient Memory, which stores the interpolation 
coefficients for regions I and II for potential energy 
calculation, WF Coefficient Memory, which stores 
the interpolation coefficients for regions I and II for 
wavefunction calculation. The BRAMs used to store 
the system’s configurations are dual-ported and 
thereby allow simultaneous memory access to write 
configurations sent by the host processor and also ac-
cess by the hardware modules to consume these con-
figurations. Presently, our hardware block is attached 
to the 32-bit On-Chip Peripheral Bus (OPB) of the 
target FPGA. Hence, we use a memory bank structure 
consisting of dual-port BRAMs to implement the 
memory platform.   

 
Figure 5. Region I Bin lookup scheme 

 
Figure 6. Region II bin lookup (1st stage) 
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Figure 7. Region II bin lookup (2nd stage) 

5.2. Description of pipelines 

Here, we describe the details of the {PE, WF} 
calculation engines. These two calculation engines are 
nearly identical with the exception of the final accumu-
lation step. We use the following pipelined compo-
nents: CalcDist to compute the co-ordinate dis-
tances between the atoms, the generic CalcFunc to 
compute potential and wavefunction and an AccFunc 
module to accumulate the resulting values.  

5.2.1. Calculate Distance (CalcDist) 

The CalcDist block calculates the squared dis-
tances between pairs of atoms. The host processor 
stores the R (x, y, z) configurations of atoms for every 
iteration onto the off-chip memory, which are then 
transferred to the on-chip Position Memory. An 
address generator is used to provide read addresses to 
the Position Memory to read the pair positions, 
( , , ) and ( , , )i i i j j jx y z x y z every clock cycle and pro-

vide them to the distance calculation module. Given N 
particles, there are N (N-1)/2 coordinate distances. The 
state machine repeats the address generation for all the 
N particles. The data path of the CalcDist block is 
shown in Figure 8 with the latencies shown in clock 
cycles. This module uses a 32-bit fixed-point represen-
tation for the positions and produces a 52-bit squared 
distance value per clock cycle. The resulting squared 

distances are compared to 2σ and classified as region I 
or region II r2 values for the respective functions.  
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Figure 8. CalcDist pipeline 

5.2.2. Calculate Function (CalcFunc) 

Figure 9 shows the CalcFunc pipeline. This ge-
neric pipeline that can compute potential and wave-
function consumes the squared distances every clock 
cycle. We use the lookup schemes discussed earlier to 
fetch the interpolation coefficients and a delta value 
pertinent to the squared distances. These are processed 
by the CalcFunc module to produce a result every 
clock cycle once the pipeline is full. The latency of the 
pipeline is 49 clock cycles.  

5.2.3. Accumulate Function (AccFunc) 

The AccFunc module accumulates the energy and 
wavefunction intermediate values from the CalcFunc 
pipeline. Since we interpolate the transformed poten-
tial, we accumulate the potential as a running product 
in region I and running sum in region II. The trans-
formed potential in region I is no larger than unity in 
value. Hence, repeated multiplication during accumu-
lation of these potential values results in a potential 
that will tend to zero. In a fixed-precision register, the 
appearance of leading zeros results in a loss of preci-
sion. To guarantee that we do not lose precision during 
accumulation in region I, we introduce a bit shift to the 
left after computing each product (if it is less than 2-1) 
and incrementing an initially denormalized exponent. 
To take care of overflow issues associated with an 
accumulator, the region II potentials are accumulated 
in a register of fixed-precision large enough to hold N 
evaluations of the maximum value (1.0) of the re-
scaled potential. The results will be delivered to the 
host, which removes the scaling and combines the re-
sults from region I and II to reconstruct the floating-
point value of the total potential energy.  

In the case of potential function, transformation 
schemes were employed which necessitated the use of 
both sum and product accumulators for the respective 
regions. However, we may recall that the wavefunction 
did not undergo any transformation. The accumulation 
step is necessary only due to the functional form taken 
by the wavefunction. Hence, we bypass the region II 
sum accumulator and route all the results to the region 
I product accumulator.  

 
Figure 9. CalcFunc pipeline 
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6. Implementation and Results 

The overall system consists of 2.4 GHz dual proc-
essor Intel Xeon with two AP130 boards from Amirix 
Systems. The entire chemistry application runs on the 
Linux based host and compiled using the GNU gcc 
version 3.3.5 compiler with –O3 optimizations. The 
kernels of the chemistry application are coded in 
VHDL and the design synthesized using Synplicity 
Synplify tools and integrated into the Xilinx tool flow. 
The place and route is performed using Xilinx 7.1 
ISE/EDK tools. Since we use a hardware/software 
approach in our design, we only need to replace the 
wavefunction and potential energy function calls in 
software with the FPGA function calls.   Transferring 
the random configurations from the host processor to 
the FPGA and the FPGA-host communication is ac-
complished through the SDRAM on the FPGA over 
the 66 MHz PCI interface using the Amirix control 
program. A polling-based approach is used to transfer 
data and status signals through SDRAM between the 
host and the FPGA. The user cores are attached to the 
On-Chip Peripheral Bus (OPB) which operates at 40 
MHz for the Amirix baseline platform. The PowerPC 
processor initializes the interpolation coefficients.  

6.1. Error Analysis 

Scientific applications commonly use floating-
point representation as they allow for high precision 
arithmetic and higher dynamic range compared to 
fixed-point representation.  The QMC software appli-
cation employs 64-bit double precision floating-point 
representation. However, floating-point representation 
on the hardware is more expensive and slower than 
fixed-point representation.  The fixed-point representa-
tion used for the squared distances fed to the pipelines 
and potential and wavefunction results (prior to accu-
mulation) are shown in the Table 1. Using a fixed-
point representation allows us to save area and in-
crease the speed of operation. Since the potential and 
wavefunction values are rescaled to be less than or 
equal to 1, their fixed-point representations use 52 bits 
after the decimal point. These representations deliver 
the required accuracy for our application.  

Table 1. Fixed-point formats 
Parameter Fixed-point formats 

 (s-signed, u-unsigned) 

( , , )x y z positions s12.20 

Squared distances  u27.26 
Potential energy and wave-
function 

s0.51 

Interpolation coefficients s0.51 
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Figure 10. Absolute error potential function 

Figure 10 shows the absolute error of potential, of 
the 52-bit hardware spline versus the same spline ex-
pressed in 64-bit double precision (52-bit mantissa) 
floating point representation. The plot is shown on a 
log (to base 2) scale so that we can equate the error 
with the bits of precision. The plots show that the error 
for fixed-point spline levels out at our 52-bit maximum 
fixed-point limit, although the floating-point represen-
tation has smaller error for large r2 and is more precise. 
Comparing our potential values to a floating-point 
version, we can see that the fixed-point version accu-
rately reproduces the floating-point results over almost 
the entire range. Since the squared distances in our 
application are confined within 216, we can safely ig-
nore the degradation of accuracy in this poor region.    

6.2. Performance 

Table 2 shows the usage of resources of the PE 
and WF kernels targeted to Xilinx Virtex II-Pro, VP30 
on the Amirix AP130 FPGA board. Table 3 compares 
the actual usage of resources (SLICEs, BRAMs, 18x18 
MULTs) on the XC2VP30 and the estimated usage on 
XC2VP50 present on the Cray XD1 platform and the 
usage of SLICEs, BRAMs, DSPs on Virtex-4 FPGA 
[23] device for the PE and WF engines. In our current 
baseline platform, we are limited by available re-
sources, which prohibits realizing additional pipelines. 
Each core occupies only 28% of the SLICEs on 
XC2VP50, but we can fit another potential pipeline or 
wavefunction pipeline to provide additional parallel-
ism. On the Virtex-4 part, we could place additional 
pipelines and they would work independently using 
different configurations. After deploying multiple 
pipelines on these high end FPGAs, we could use the 
available resources to calculate derivatives of these 
functions and other related ground-state properties, 
which are often of utmost importance for studying N-
body systems. Table 4 shows the execution profile 
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(units in seconds) for the FPGA accelerated QMC ap-
plication and the software only QMC application run-
ning on an Intel Xeon, 2.4 GHz dual-processor with 
the PCI FPGA boards. Our design can presently simu-
late a system of up to 4000 atoms. The simulation is 
performed for 100 iterations, although increasing the 
iterations reduces the statistical uncertainty in the 
computed properties.  

From table 4, we observe that a significant amount 
of time is spent on overheads consisting of data-
processing and transfer to the FPGA over the 66 MHz 
PCI. This is because we are presently using a devel-
opment board with a slow interface; use of a system 
with a better communication interface could easily 
provide an order of magnitude improvement. The rest 
of the application consists of creating a reference con-
figuration and using SPRNG to add a random dis-
placement to the above configuration. For the current 
system, we can observe a speedup of 3x over the soft-
ware only QMC application.  Since we typically deal 
with a large number of particles in quantum chemistry 
simulations, our reconfigurable hardware implementa-
tion can provide potential speedups greater than 5x 
while accelerating the potential and wavefunction ker-
nels in the absence of communication bottlenecks. 
Also, we can speedup our overall application by iden-
tifying critical portions remaining that could be im-
plemented using reconfigurable hardware.  

Table 2. Resource usage on AP130 VP30 

Resource 

type 

Potential ener-
gy  

(on FPGA0) 

Wavefunc-
tion 

(on FPGA1) 

SLICEs (13696) 11386 (83%) 9920 (72%) 

BRAMs (136)     100 (73%)   100 (73%) 

18x18 multipliers  
(136) 

     85 (62%)   109 (80%) 

Table 3. Resource usage (post place and 
route) on Xilinx FPGAs (VP30, VP50, Virtex 4) 

SLICEs 
(%)  

BRAMs 
(%) 

18x18 MULTs/ 
DSPs (%) 

   Resource  

       type 

Target 

FPGA 
PE WF PE WF PE WF 

Virtex-II Pro 
XC2VP30 

48 46 50 50 62 80 

Virtex-II Pro 

XC2VP50 
(estimated) 

 

28 

 

27 

 

29 

 

29 

 

36 

 

47 

Virtex4 
XC4VFX140 
(estimated) 

 

14 

 

11 

 

7 

 

7 

 

33 

 

33 

Table 4. Execution profile of a 4000 atom 
simulation over 100 iterations (in seconds) 

 PE + 
WF 

kernels 

Rest of the 
application 

 

Over-
head  

 

Total 

FPGA 
accelerated 
application 

 
61.8 

 
108.73 

 
68.4 

 
238.93 

Software 
only QMC 
application 

 
664.51 

 
108.88 

 
-- 

 
773.39 

7. Conclusions and Future Work 

We present a novel architecture to calculate pair-
wise functions of N -body systems using Quantum 
Monte Carlo simulations. We have carefully parti-
tioned our software application such that the computa-
tionally intensive potential and wavefunction calcula-
tions are performed on the reconfigurable hardware 
and the remaining calculations are performed on the 
host processor. The design uses fixed-point representa-
tions for all values within the system thus reducing the 
area and complexity compared to floating-point im-
plementation. This design allows us to compute any 
function of the position co-ordinates using a general 
interpolation framework. Based on the results re-
ported, we will be able to fit additional wavefunction 
or potential pipelines on the next-generation FPGAs. 
Presently, quadratic interpolation empirically provides 
a good balance between numerical accuracy and usage 
of resources. However, additional block memories 
available on the current high-end FPGAs will enable 
us to choose a different order of interpolation, e.g. 
cubic splines to provide increased accuracy. We will 
also identify possible functions from the rest of the 
application which can be accelerated using FPGAs.  

Partitioning the data suitably will allow us to op-
erate multiple copies of each pipeline on a single 
FPGA or place copies of each pipeline on multiple 
FPGAs, thus taking advantage of the coarse-grained 
parallelism. We are working on extending our present 
prototype platform to include multiple processing 
nodes and employing a Message Passing Interface 
(MPI) model for communication between the nodes. 
Each processor will have its own FPGA board. Each 
slave FPGA on the host processor can work on its own 
set of configurations. There would be no communica-
tion required among the FPGAs themselves. We will 
use MPI at the software level to co-ordinate the host 
processors. With such a setup, the total speedup would 
be linear in the number of FPGAs times the speedup of 
a single FPGA. Following this, we will port our design 
onto the Cray XD1 located at the Oak Ridge National 
Laboratory. This Cray XD1 system, known as Tiger, 
consists of 144 64-bit Opteron processors arranged in 
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72 nodes of two processors each.  Six of the nodes 
include application acceleration processors (FPGA) 
providing a tight integration of FPGA resources and 
host microprocessors over the system’s high band-
width and low latency interconnect. A platform like the 
Cray XD1 with multiple FPGAs and compute nodes 
will allow us to place multiple copies of the calculation 
pipelines, thereby maximizing the achievable perform-
ance.  
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