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Abstract: FPGA-based acceleration of molecular dy-
namics simulations (MD) has been the subject of several
recent studies. Here we report on an implementation
that we believe to be the first to combine a high-level
of FPGA-specific design, systematically determined pre-
cision, hardware support for complex force models, and
support for simulations of over 250K particles. The tar-
get system consists of a standard PC with a 2004-era
COTS FPGA board. There are several innovations: new
microarchitectures for several major components, includ-
ing the cell list processor and the off-chip memory con-
troller; a novel arithmetic mode; and restructurings of
algorithms, e.g., multigrid, to map efficiently to FPGA
resources. Extensive experimentation was required to op-
timize precision, interpolation order, interpolation mode,
table sizes, and simulation quality. We obtain a substan-
tial speed-up over a highly tuned production MD code.

1 Introduction
With microprocessors hitting the power wall, alternative
architectures for high performance computing (HPC) are
receiving substantial attention. Of these, HPC using re-
configurable computing (HPRC) is receiving its share,
with, e.g., a new national center and multiple special is-
sues of prominent publications focusing on this technol-
ogy. The promise of HPRC is high performance at lower
operating frequency, and thus lower power. The areas of
greatest success have been in signal and communication
processing. Here, small kernels dominate the computa-
tion; these kernels are also highly parallelizable, and can
make do with comparatively low-precision and/or low-
complexity arithmetic.

Early work in HPRC often reported per-node accel-
erations in the hundreds, and even thousands. As HPRC
has matured, however, a broader range of HPC applica-
tions is being addressed and the reported speed-ups have
often been far more modest. Some of the well-known
difficulties are as follows:
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• Chip area limitations. While code size is gener-
ally not a high-order concern in HPC, in HPRC the
size of the code directly affects the chip area required
to implement the application. Although the rela-
tionship is indirect, the overall implication is that
the more complex the application kernel, the more
the chip area required to implement it. This results
in reduced parallelism and thus performance.

• Designer limitations. Complex applications often
require subtantial expertise and design time to map
them efficiently to FPGAs.

• Amdahl’s law limitations. If the kernel does not
dominate sufficiently (i.e., consist of, say, more than
95% of the execution time), then deeper application
restructuring may be necessary.

• Component limitations. A key attribute of mod-
ern FPGAs is their embedded “hard” components
such as multipliers and independently accessible
memory blocks (block RAMs). Floating point sup-
port, however, remains modest; this limits substan-
tially the FPGA’s potential performance in classic
HPC applications (see, e.g., [5] and references).

The case study described here, acceleration of molec-
ular dynamics simulations (MD) with HPRC, is inter-
esting on at least two fronts. First, its acceleration is
inherently important: although substantial progress has
been made in developing efficient and scalable codes (e.g.,
NAMD [17] and GROMACS [24]), MD is still compute
bound (see, e.g., [8]). Second, it appears that, more
so than with most floating point intensive HPC appli-
cations, HPRC may offer substantial acceleration. One
reason is that the kernels, while non-trivial, may still be
“manageable” in the sense that with some optimization
they fit on high-end FPGAs. Another is that although
high precision is important, there may be room to reduce
precision somewhat while still retaining the quality of the
MD simulations. This fact has has been used, not only
by most FPGA implementations of MD, but by ASIC-
[2] and von Neumann-based [24] versions as well.

HPRC acceleration of MD has been studied by a num-
ber of groups [1, 4, 11, 13, 14, 20] with the design space
being spanned by several axes:

• Precision: Is 53 bits used (double precision), or 24
(single precision), or something else? How is the
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choice motivated?
• Arithmetic mode: Is floating point used? Block
floating point? Scaled binary? Logarithmic repre-
sentation? A hybrid representation?

• Base MD code: Is it a standard production system?
An experimental system? A reference code?

• Target hardware: What model FPGA is used? How
is it integrated, on a plug-in board, or in a tightly
integrated system?

• Scope: MD implementations have a vast number of
variations – which are supported? How is the long-
range force computation performed? With cut-off
or a switching function? Or, is a more accurate,
and more computationally complex, method used?
Is this done on the FPGA or in software?

• Design flow: How is the FPGA configured? With
a standard HDL, or a C-to-gates process, or some
combination?

The goal of the work described here is to investigate
the viability of MD in current generation FPGA tech-
nology. While previous studies have made substantial
progress, most have made compromises in either perfor-
mance, precision, model size simulated, or force model
complexity. We attempt to advance the art with numer-
ous FPGA-centric optimizations, while retaining the MD
simulation quality. In particular, our point in the design
space is as follows:

• Precision: 35-bit, as derived from experiments mea-
suring energy fluctuation (as described, e.g., in [2]).

• Arithmetic mode: we avoid floating point, but retain
accuracy with a new arithmetic mode that supports
only the small number of alignments actually occur-
ring in the computation.

• Base MD code: ProtoMol [16], with further perfor-
mance comparisons with NAMD [17].

• Target hardware: a generic PC and a commercial
PCI plug-in board with two Xilinx VP70s [3]. Per-
formance for this configuration with other FPGAs
is estimated with area and timing accurate design
automation methods.

• Scope: the long-range component of the electrostatic
force is computated using multigrid [6, 21] and is
implemented entirely on the FPGA.

• Design Flow: All major components (force pipelines,
cell-list processor, off-chip memory controller) were
designed from algorithm-level descriptions and im-
plemented using VHDL. Where appropriate, algo-
rithms were restructured to best use FPGA re-
sources.

We find that even using 2004-era FPGA hardware we
are able to achieve a 5× to 8× speed-up over NAMD with
little if any compromise in simulation accuracy. The rest
of this work is organized as follows. In the next sec-
tion we give an overview of MD computation and the

algorithms that we use to implement it. There follows
a description of the design and implementation of the
major components. After that we describe our valida-
tion and performance experiments, and conclude with a
discussion of potential future implications.

2 Methods

2.1 MD Review

MD is an iterative application of Newtonian mechanics
to ensembles of atoms and molecules (see, e.g., [18] for
details). MD simulations generally proceed in phases, al-
ternating between force computation and motion integra-
tion. For motion integration we use the Verlet method.
In general, the forces depend on the physical system be-
ing simulated and may include LJ, Coulomb, hydrogen
bond, and various covalent bond terms:

Ftotal = F bond+F angle+F torsion+FHBond+Fnon−bonded

Because the hydrogen bond and covalent terms (bond,
angle, and torsion) affect only neighboring atoms, com-
puting their effect is O(N) in the number of particles N
being simulated. The motion integration computation is
also O(N). Although some of these O(N) terms are eas-
ily computed on an FPGA, their low complexity makes
them likely candidates for host processing, which is what
we do. The LJ force for particle i can be expressed as:
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where the εab and σab are parameters related to the types
of particles, i.e. particle i is type a and particle j is type
b. The Coulombic force can be expressed as:

FC
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∑
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A standard way of computing the long-range forces
is by applying a cut-off. Then the force on each particle
is the result of only particles within the cut-off radius.
Since this radius is typically less than a tenth of the size
per dimension of the system under study, the savings are
tremendous, even given the more complex bookkeeping
required to keep track of cell- or neighbor-lists.
The problem with cut-off is that, while it may be

sufficiently accurate for the rapidly decreasing LJ force,
the error introduced in the slowly declining Coulombic
force may be unacceptable. A number of methods have
been developed to address this issue with some of the
most popular being based on the Ewald method (see, e.g.,
[7]). The disadvantage for HPRC is that these methods
involve a three dimensional FFT, which though viable
[15], is difficult to implement efficiently on a FPGA. An
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alternative method uses multigrid: this has sufficient ac-
curacy [12] and, as we will show, maps well to the target
hardware.

2.2 Short-Range Force Computation

section

Figure 1: Table look-up varies in precision across r−k.
Each section has a fixed number of intervals.

A standard way of computing the short-range force is
with table look-up with interpolation. As can be seen in
Figure 1, each curve is divided into several sections along
the X-axis such that the length of each section is twice
that of the previous. Each section, however, is cut into
the same number of intervals N .
To improve the accuracy of the force computation,

we interpolate using higher order terms. Here we assume
a Taylor expansion; below we describe a more accurate
alternative. When the interpolation is order M , each
interval needs M +1 coefficients, and each section needs
N∗(M+1) coefficients. Since the section length increases
exponentially, extending the curve (in r) only increases
the size of coefficient memory very slowly.

Table 1: Shown is the trade-off between interval size (N
is the number of intervals per section) and interpolation

order M for r−14.
N M Average Error Maximum Error
32 4 2.55E-7 3.67E-6
64 4 7.35E-9 1.08E-7
64 3 3.74E-7 4.19E-6
128 3 2.56E-8 2.55E-7
128 2 2.27E-6 1.73E-5
512 2 3.32E-8 2.66E-7
512 1 1.17E-5 6.04E-5
2048 1 7.31E-7 3.76E-6

Increasing M or N each improves simulation accu-
racy. Interestingly, on the FPGA these two numbers have
a resource cost in different components: the main cost for
finer intervals is in block RAMs, while the main cost for
higher order interpolation is in hardware multipliers and
registers. Table 1 gives a sample of the tradeoff effects.
For our system configuration (described below), N = 128
and M = 3 appears to be optimal.
Next, we compare three higher order interpola-

tion methods—Taylor, Orthogonal Polynomials, and
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Figure 2: Interpolation comparisons.

Hermite—by plotting their relative RMS error. In the
left graph of Figure 2, the number of intervals per sec-
tion varied; in the right graph, the order is varied. We
observe that the method of orthogonal polynomials is far
superior to the others and so is the one used.

Find most significant 1 to:
� get format
� extract a
� extract (x-a)

C3*(x-a) Coefficient 

Memory

format

(x-a)

a

r2 or r

(C3*(x-a)+C2
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Figure 3: Position of the leading 1 determines the
operand format in the interpolation pipeline.

We now describe the interpolation pipeline (see Fig-
ure 3. Given that the interpolation function is third or-
der, it necessarily has the format

F (x) = ((C3(x− a) + C2)(x− a) + C1)(x− a) + C0,

where x ≡ r2 = input, a = the index of the interval
from the beginning of the section (see Figure 1), and
x − a = the offset into the interval. The coefficients
C0, . . . , C3 are unique to each interval, and are retrieved
by determining the section and interval.
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Proper encoding makes extraction of the section, in-
terval, and offset trivial. For example, let the number
of bits of x be 14, and the (necessarily fixed) number of
intervals per section be 8. Then for x = 00001111001100:
00001 determines the section (position of the leading 1);
111 determines the interval (3 bits for 8 sections); and
the remaining bits 001100 are x − a, the offset into the
interval. As can be seen in Figure 3, there are four table
look-ups from coefficient memory, (one for each coeffi-
cient), three multiplies, and three adds.

2.3 Semi Floating Point

As previously discussed, floating point computations are
very expensive on FPGAs; here we describe an alter-
native, semi floating point, that takes advantage of the
characteristics of the MD computation just described.
We begin by noting that the FPGA’s floating point diffi-
culties are primarily with addition; this is now addressed.

Result

OP1

…

Adder OP1

Switcher

OP2

…

Adder OP2

Switcher

Adder Result

Switch

Format

Figure 4: Semi FP adder with explicit alignment.

The critical observations concern the computation
shown in Figure 3. First, for each interval, the scale fac-
tors (exponents) are known. Second, for each interval,
differences in scale factors (exponents) for the addends
are known. Third, there are only a small number of dif-
ferences between pairs of scale factors, and only these
need to be supported by the adder. Fourth, the possible
pre-computed shifts (and only those shifts) are hardwired
as shown in Figure 4. Finally, the precomputed shift is
selected at run time based on the formats stored along
with the coefficients, and extracted along with the coef-
ficients (see Figure 3). The LJ pipeline uses 11 formats,
the Coulomb 14; as there is no overlap in formats, the
combined LJ/Coulomb pipeline uses 25 formats.

We now compare the semi floating point to full float-
ing point implementations. For the latter we use Logi-
Core Floating-point Operator v2.0 from Xilinx [25]. Ta-
ble 2 gives the number of slices (Xilinx V2 family) re-
quired to implement various components. The final col-

Table 2: Shown is the resource usage (in slices for the
Xilinx V2 family) of various components.

Format Adder Mult. Complete
Force

Pipeline
LogiCore DP FP 692 540 19566
LogiCore SP FP 329 139 6998
Semi FP: 35-bit 70 316 —
Integer: 35-bit 18 307 —
Combined semi FP, — — 4622
integer

umn gives the number of slices for the three versions for
one entire non-bonded force pipeline. Our version uses
some integer units as well as the semi floating point, but
only at points in the computation where no precision can
be lost. The SP and DP pipelines could perhaps also be
optimized this way, but the complexity of the conversions
makes this less advantageous there than it is for the semi
FP pipeline. A comparison with respect to register use
yields similar results.
The practical result is that, for the Xilinx Virtex2-Pro

VP70, two force pipelines can be implemented using ei-
ther single precision floating point or semi floating point,
the former resulting in a loss of precision from 35 to 24
bits. As shown below and in [2], this difference could be
critical to simulation accuracy. On the other hand, semi
floating point precision could scale at least up to 40 bits
(without serious optimization), with a slight reduction
in operating frequency. With respect to double precision
floating point: fitting even one pipeline on the VP70 is
impossible with our current pipeline design. This expe-
rience with floating point units is similar to that of two
other studies [13, 19].

2.4 Multigrid overview

We now sketch the long-range force implementation using
multigrid, for details please see [9]. The basic problem
of Coulomb force computation is to compute the poten-
tial distribution by solving the Green’s function for the
given charge distribution. Grid-based algorithms map
a smoothing function defined in the continuous coordi-
nate space to one defined in the discrete grid coordinate
space. The operations can be classified into two types:
particle-grid (and grid-particle) and grid-grid. It follow
that the multigrid processor requires two kinds of compu-
tation modules: a particle-grid (and grid-particle) con-
verter and a grid-grid convolver.
The particle-grid converter performs assignment (or

interpolation) between particles and their the neighbor-
ing grid points using appropriately chosen basis func-
tions. This takes three steps: (i) scaling particle coordi-
nates to grid coordinates, (ii) computing the the assign-
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ment and/or the interpolation weights, and (iii) multi-
plying the weights by the charge (or the potential on the
grid point).

Input

Figure 5: One quarter of a 1:64 particle-grid converter
tree structure.

With a Pth order basis function, one particle is associ-
ated with P 3 grid points. Performing the assignment (or
interpolation) in parallel both speeds up the computation
and reduces the number of basis function pipelines. Fig-
ure 5 shows one quarter of the tree structure of a 1 : 43

particle-grid converter. Each color circle multiplies its
input by Φ(w) (or dΦ(w)) from the cube of the matching
color in the basis function pipeline. The circles of match-
ing color in the last column share the same outputs from
a single basis function pipeline, as do those in the second
column (not shown here). This structure has 43-way par-
allelism with only three basis function pipelines for three
dimensions. One issue with the particle-grid converter is
that a large number of grid points must be accessed on
every cycle; this requires both high bandwidth and highly
parallel addressing logic. Fortunately, modern FPGAs,
with their hundreds of independent Block RAMs, have
just such capability.

*
B

A0A1

A2A3

A0*B A1*B

A2*B A3*B

Figure 6: Splitting a convolution.

The 3D grid-grid convolver is constructed from 2D-
convolvers in series with 2D FIFOs. The 2D-convolvers,
in turn, are constructed with 1D-convolvers in series with
1D FIFOs (see, e.g., [22]). Configuring the lengths of
these FIFOs allows us to adapt the logic to handle large
input matrices of various sizes. That is, by splitting a big
convolution into several small ones and routing results to
the proper destinations, we can handle various large ma-

trices. As is shown in the example in Figure 6, the 2D
matrix A is too big to convolve with matrix B directly.
Therefore, it is split into 4 small pieces, A0 to A3, each
of which is convolved with B to produce A0*B through
A3*B. These are partial results of A*B and spread from
the four corners. Summing them up based on their loca-
tion yields A*B.

2.5 Precision versus Quality

Because MD simulations are chaotic, small changes in
arithmetic (precision or mode) result in substantial alter-
ations of particle trajectories after only a few collisions.
For production users of MD codes, validation is in-the-
end accomplished by comparing simulations with exper-
iments. Much more common, however, is to check for
simulation quality by making sure that physical quan-
tities that should be invariant remain so. The relative
RMS fluctuation in total energy is defined as:

√

|〈E2〉 − 〈E〉2|

|〈E〉|

We ran a set of experiments based on two versions of our
serial reference code, reproducing as closely as possible
the experiments done by Amisaki, et al. [2]. The first
used double precision floating point, the second tracked
the hardware implementation using varying precision.
When the precision of the fixed point code was set at
50 bits, the results precisely matched that of the floating
point code.
We also ran a set of experiments to find the relation-

ship between energy fluctuation and precision. In agree-
ment with [2], we found that the various function units
can be tuned independently to derive the optimal FPGA
circuits that retain minimal energy fluctuation. For sim-
plicity, however, we present results where the precision
of the entire datapath is varied in unison. We use two
different simulation time scales: time steps were set to
10−15 seconds and 10−16 seconds, respectively. A graph
showing the results from this set of experiments is shown
in the left part of Figure 7. One observation is that, in
this experiment, a 40-bit datapath results in a similarly
low energy fluctuation as a full 53-bit datapath.
Fluctuation of total energy, however, is not the only

check that a system is “well-behaved.” Another is the
ratio of the fluctuations between total energy and kinetic
energy R = ∆Etotal/∆Ekinetic. R should be less than
.05 [23]. We plot R in the right half of Figure 7. Note
that by this measure, 31 bits are sufficient for time-steps
of 10−15 seconds and 30 bits are sufficient for time-steps
of 10−16 seconds. Although greater precision results in
better behavior, that better behavior may not be needed.
Accounting for the hard multipliers available on the

current Xilinx FPGAs, we round up to the next time-area
discontinuity and obtain a 35-bit datapath. This design
has from a factor of 10× to 50× more energy fluctuation
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Total Energy Fluctuation vs Precision
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Figure 7: Shown is the effect of precision on two metrics for simulation accuracy: (a) Fluctuation of total energy and
(b) the ratio of the fluctuations in total and kinetic energies.

than the best case, but between 100× and 500× lower
R than what has been regarded as minimal to indicate
“good behavior.”

3 Design and Implementation

3.1 System Level Design
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Figure 8: System block diagram.

One version of the overall system design is shown in Fig-
ure 8. We assume a two FPGA coprocessor such as
the Annapolis Microsystems WidstarII-Pro. The short-
range forces, with cell list support, are computed on one
FPGA, while the long-range forces (using multigrid) are
computed on the other. These FPGAs can execute con-
currently. A potential optimization, especially when the
long-range force is not computed every time-step (every
2nd to 10th cycle is common), is to use both FPGAs
for the short-range force and only configure one of the
FPGAs for the long-range force when needed. Position

memory and type memory are duplicated. The convert-
ers translate double precision floating point numbers used
by the host into 35-bit semi-floating format on-the-fly.

3.2 Multigrid Implementation

The multigrid implementation is shown in Figure 9. It
consists of the particle-grid converter, the grid-grid con-
volver, the interleaved memory interface, control logic,
and various miscellaneous components. The control logic
routes data, according to the multigrid algorithm, by
providing appropriate MUX settings and memory ad-
dresses; the compute modules can thus be re-used in mul-
tiple operations. Because the grid-grid convolver only in-
puts and outputs one datum per clock cycle, it uses the
block RAMs directly. The finest grid, however, needs the
complex memory interleaving described above. The Q-
store and V-store hold the charges and potentials, respec-
tively. The Type-Param memory is used to translate the
particle-type indices into charge. A low-level optimiza-
tion is that the final vector-product multiplier shares HW
multipliers with the convolver.

3.3 Short-Range Force Implementation

Particles are classified into cells every iteration after their
new positions are determined (after motion integration).
Each cell has a list structure containing indices of its
particles. Although the particular particles in each cell-
list vary from iteration to iteration, the cell structure
itself is fixed. Thus the traversal order of the cells can
be predefined.

The cell lists are constructed on the host by the orig-
inal MD code, although the data ordering is modified
before download to the coprocessor. In particular, in-
stead of lists of indices, particle coordinates and types
are grouped by cell. This information is downloaded to
the coprocessor every time-step. One coprocessor-centric
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Figure 9: Multigrid schematic.

optimization is to transfer particle type with its position
instead of retaining it statically in type memory. Another
is that the particle-per-cell counts are downloaded to dis-
tinguish cells. Based on this information, particle data
are addressed with two-level indexing logic: the first level
locates cells while the second locates particles within the
cells. To support multiple parallel force pipelines, some
dummy particles may be padded at the end of a cell.

The force pipeline array is shown in Figure 10. Given
N force pipelines, it works in following the steps:

1. N particles from one cell A are loaded into the Pi

array, and one of them is selected to be stored in the
Pi register. Its acceleration is fetched from acceler-
ation memory for later accumulation.

2. In every following cycle, M particles from a neigh-
boring cell B are loaded into the Pj registers. At the
end of each force pipeline, the results are not only
accumulated with accumulations of particles from
cell B, but also with that of the particle in the Pi

register through an adder tree. Pi’s temporary ac-
cumulation is buffered in the Pi acceleration array.

3. After all particles in cell B are computed with the
particle in the Pi register, the next particle in Pi

array is loaded into the Pi register. Step 2 is then
repeated.

4. After all particles in the Pi array have been com-
puted, the results in the Pi acceleration array are
stored back into the acceleration array. At the same
time, the next N particles in cell A are ready to be
loaded and the process goes back to step 1.

All combinations of neighboring cell pairs are tra-
versed in a nested loop that wraps these four steps. The
modules implemented in VHDL include: the two-level in-
dexing logic; new position, type, and acceleration mem-
ory; pair-controller; and host/coprocessor interface. The
coprocessor has been integrated into ProtoMol with soft-
ware functions to arrange particle data and cell-list in-
formation for downloading and to post-process results.

To deal with large models we have implemented a
programmer-controlled caching scheme. For this we use
the six SRAMs around each FPGA on our Annapolis Mi-
crosystems board. These have a total capacity of 12Mb
and a bandwidth of 432 bits per cycle. We instantiate

two sets of caches on each FPGA chip, each of which
can store 2048 particles. Total capacity is 256K parti-
cles. Performance is independent of model size up to the
capacity of the system.

4 Validation and Results

The primary target system consists of a PC with a 2.8
GHz Xeon CPU and a WildstarII-Pro PCI board from
Annapolis Micro Systems [3]. The board has two Xilinx
Virtex-II-Pro XC2VP70 -5 FPGAs. ProtoMol 2.03 was
used (downloaded from the ProtoMol website). The op-
erating system was Windows-XP; all codes were compiled
using Microsoft Visual C++ .NET with performance op-
timization set to maximum. FPGA configurations were
coded in VHDL and synthesized with Synplicity inte-
grated into the Xilinx tool flow. Data transfer between
host and coprocessor was effected with the software sup-
port library from Annapolis Microsystems. These trans-
fer routines are efficient with nearly the full PCI band-
width being used and little system overhead. FPGAs
run at 75MHz in both short- and long-range computa-
tion modes. Model sizes of up to 256K particles are sup-
ported.

The design was validated against three serial reference
codes: our base code ProtoMol [16], which uses double
precision floating point; and two versions our own code
(fixed and float) that tracks the hardware implementa-
tion. Validation has several parts. First, the hardware
tracker matches ProtoMol exactly when the hardware
tracker has the same floating point datapath. Second, the
fixed-point hardware tracker exactly matches the FPGA
implementations. The missing link is the relationship
between the fixed-point and floating point versions of
the hardware tracker. These can only be compared in-
directly, however, as is done using the method described
in the previous section. We simulated a model of more
than 14,000 particles and 26 atom types (bovine pancre-
atic trypsin inhibitor). After 10,000 time steps running
on both the original ProtoMol and our accelerated ver-
sion, we measured the total energy fluctuation. They
were both roughly 5 ∗ 10−4 with that of the FPGA ver-
sion being slightly lower.

For performance comparisons, we simulated the Pro-
tein Data Bank Molecule of the Month for January, 2007,
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Table 3: Profile of a 77K particle simulation run for 1000 time-steps (units in seconds). Long range forces are computed
every iteration. For the FPGA accelerated version, the long-range and short-range forces overlap.

Short Range Long Range Bonded Motion Comm. & init. & TOTAL
Force Force Forces Integration overhead misc.

FPGA Accelerated
Protomol 533.3 75.3 21.5 20.8 25.6 9.2 590
PC-only ProtoMol 3867.8 234.1 21.6 21.5 — 12.9 4157
PC-only NAMD 177.3 3726

Importin Beta bound to the IBB domain of Importin
Alpha.1 This complex has roughly 77K particles. The

simulation box is 93Å×93Å×93Å. We ran for 1000 time-
steps. Table 3 profiles the relative contributions of vari-
ous components of both the baseline and the accelerated
versions of ProtoMol. Two points are noteworthy for
the accelerated version: (i) that the short range force
dominates, concurring, e.g., with [20], and (ii) that the
overhead is a small fraction (roughly 6%) of the execu-
tion time. The total speed-up is 7×. For further refer-
ence, we also downloaded and ran a NAMD binary (v2.6

b1) 2; these results are also shown in Table 3. NAMD
is somewhat faster than ProtoMol; the resulting speed-
up is 6.3×. These numbers are clearly preliminary as
there is substantial room for performance improvement
in both baseline and FPGA-accelerated configurations;
this is now described.

Baseline Code

Optimization. ProtoMol has been optimized for exper-
imentation of the kind described here. In contrast, others

1http://www.rcsb.org/pdb/explore/explore.do?structureId=

1QGK and http://www.rcsb.org/pdb/static.do?p=education

discussion/molecule of the month/pdb85 1.html
2http://www.ks.uiuc.edu/Development/Download/download.cgi?

PackageName=NAMD

codes (such as NAMD and GROMACS) have been heav-
ily optimized for performance.
Long-range computation. The serial multigrid long
range force computation shown in Table 3 seems slow
(see, e.g. [12]). This is currently being investigated, but
in any case, the NAMD SPME code is a bit faster.
Periodic force integration. Commonly, the long-
range force is only computed periodically. In the NAMD
benchmarks it is computed every four time-steps.3

FPGA Accelerated Code

Dynamic Reconfiguration. While the performance of
the FPGA-based multigrid computation appears to be
good, the use of computational resources is dispropor-
tionate to its execution time (again, as observed previ-
ously by [20]). Fortunately, the wall-clock time of each
time-step is long in comparison to the time it takes to
reconfigure the FPGA. Especially when used with pe-
riodic force integration, dynamic reconfiguration is an
attractive alternative. For our current hardware, this al-
lows both VP70s to be used primarily for the short-range
computation, nearly doubling performance.
Larger chip, higher speed-grade. A larger chip of
the same family (the Xilinx V2 VP100) allows the short-

3http://www.ks.uiuc.edu/Research/namd/performance.html
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Table 4: Performance of various configurations given per time-step in seconds of wall-clock time for a 77K particle
simulation.

System Tested Performance

Serial configuration as described
ProtoMol w/ multigrid every cycle 4.2
NAMD 2.6 w/ PME every cycle 3.7
NAMD 2.6 w/ PME every 4th cycle 3.2

Accelerated configuration as described (2 VP70s)
ProtoMol w/ multigrid every cycle .59
ProtoMol w/ multigrid every 4th cycle
(dynamic reconfiguration) .37
ProtoMol w/ reduced precision and multigrid
every 4th cycle (dynamic reconfiguration) .22

Accelerated configuration, simulation only
ProtoMol w/ single VP100 w/ multigrid every 4th
cycle (dynamic reconfiguration) .36
ProtoMol w/ single VP100 w/ multigrid every 4th
cycle (dynamic reconfiguration), reduced precision .31

From NAMD website
NAMD w/ PME every 4th cycle 90K particle Model 2

range force unit to be implemented with four pipelines
rather than just the two that fit in the VP70. This (simi-
larly) results in a near doubling of performance. A higher
speed-grade results in a roughly 15% increase in operat-
ing frequency and thus performance.
Newer chip. Our experiments with the Xilinx V4 and
V5, and with the Altera Stratix-II are still in progress.
Although we do not anticipate a substantial increase in
logic per chip that could result in increased parallelism,
an increase in operating frequency is likely.
Reduced precision. If reduced precision is acceptable,
this also allows more pipelines to be implemented per
FPGA, again, with a proportional increase in perfor-
mance. Four pipelines are then possible using the VP70,
increased from the two with 35-bit precision.
Optimizations. Virtually no optimization has been
done on the FPGA configurations; professional design us-
ing FPGA-specific tools (such as guided placement) could
result in substantial performance improvement. For ex-
ample, while our arithmetic units are area efficient, they
are far slower than the corresponding elements in Xilinx
library. Another obvious optimization that has not yet
been undertaken is tuning the MD cell size.

Table 4 gives the wall clock execution time (per time-
step) for an assortment of configurations. The serial
codes (except for the bottom line, which was obtained
from the NAMD website) were all run on the same PC
that serves as host to our FPGA coprocessor. The next
set of configurations uses the same PC, but this time ac-
celerated with the FPGA coprocessor as described. The
final set are simulation only. These assume the same
board but with the two VP70s replaced with a single

VP100 of the same speed grade. Timing and area es-
timates are obtained using the same tool flow through
post-place-and-route. The area estimate from such mea-
surements is usually exact and the timing within 10%.

The PC-only ProtoMol runs used a cell size of 5Åand

a Lennard-Jones cut-off of 10Å. The NAMD runs used
a pair-list distance of 13.5Åand a Lennard-Jones cut-off

of 10Å. The accelerated ProtoMol runs used a cell size
of 10Åand a Lennard-Jones cut-off of 10Å. Finally, we
note that NAMD performance of 2 second per time-step
per node has been reported for slightly larger simulation
models (obtained from the NAMD web site).

5 Discussion
We have described a study of FPGA acceleration of
molecular dynamics simulations. We differentiate our
work in that it combines the following: a high level of
FPGA-specific design, systematically determined preci-
sion, support for complex force models, and support for
MD simulations of up to 256K particles.
Comparing MD performance of FPGA-based systems

will be frought with difficulty until double precision float-
ing point is fully supported. Even so, we have generated
a number of new data points which we now interpret. We
have shown experimentally the following speed-ups; the
first two comparisons show little if any loss in simulation
quality (numbers from Table 4):

• 8.6× when comparing NAMD run in our lab ver-
sus ProtoMol accelerated with two VP70s (3.2 ver-
sus .37); this reduces to around 5× when compar-
ing with external NAMD reports (less-than-2 versus
.37).
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• Similar results are obtained by using a single VP100
than two VP70s (3.2 versus .36 and less-than-2 ver-
sus .36).

• When the precision requirement is relaxed, the
speed-up for a single VP100 increases to 10× ver-
sus NAMD run in our lab (3.2 versus .31), and 6.5×
versus external NAMD reports (less-than-2 versus
.31).

Intriguing is what this says about the future potential
of HPRC for heavily floating point applications. From
the technology point of view, adding hard floating point
units to future generation FPGAs, to go with the hard
block RAMS and multipliers, would make a tremendous
difference. Also making a big difference would be in-
creasing the numbers of those other hard components in
proportion to the process density.
If FPGA technology does not change, HPRC for MD

may still be promising. We have shown that a factor of
5× to 10× speed-up is achievable using a VP100 accel-
erator versus a highly tuned code. Since the FPGA con-
figurations were done entirely with a modest amount of
student labor, there is potential for substantially increas-
ing that speed-up. For such an important application as
MD, this effort is likely to be reasonable.
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