

Two Electron Integrals calculation accelerated with Double Precision

exp() Hardware Module

Maciej Wielgosz
2
, Marcin Pietroń

2
, Ernest Jamro

1,2
, Paweł Russek

1,2
 ,

Kazimierz Wiatr
1,2

1.Akademia Górniczo-Hutnicza, al. Mickiewicza 30, 30-059 Kraków

2.ACK Cyfronet AGH, ul. Nawojki 11, 30-950 Kraków

email:wielgosz/pietron/jamro/russek/wiatr@agh.edu.pl

Abstract

 FPGA implementation of double precision

exponential function module is presented. The

module will be incorporated in the Gaussian

system to accelerate extremely time consuming

exponential function evaluation. The exp

function is accelerated on SGI RASC[1] board

with two Virtex-4 LX200 FPGA. The exp()

function alone occupies less than 3% Virtex-4

LX200 FPGA. Exp() arguments are fetched to

the FPGA’s and results are sent back to

processors over the system bus working at speed

of NUMAlink 6,4 GB/s. The exponential module

reaches the processing speed of 200 MHz, the

external memory interface limits the number of

operation to two exp() every clock cycle per a

FPGA. The overall end-to-end algorithm

execution speedup that authors expect to achieve

4x as compared to a sequential implementation

of the algorithm executed on a single 2 GHz Intel

Itanium2 microprocessor.

 Gaussian

Gaussian[2] is a software environment,

employed by chemists, chemical engineers,

biochemists, physicists and others for research in

established and emerging areas of chemical and

physics interest. Starting from the basic laws of

quantum mechanics, Gaussian predicts the

energies, molecular structures, and vibration

frequencies of molecular systems, along with

numerous molecular properties derived from

these basic computation types. Since the

majority of the operations conducted with

Gaussian are high precision, data of double

precision are ubiquitous in this application.

Profiling of the Gaussian

Employment of well known profilers (e.g.

gnuprof) was the first step to profile Gaussian

application. Results of using these profilers were

not satisfying (e.g. binaries produced by gprof

after compiling Gaussian can not be debug).

Consequently a new, dedicated profiling tool was

developed. This tool is able to determine data

dependencies (e.g. data dependencies in the

loop). Such the environment is very helpful in

finding hotspots which can be accelerated with

FPGA. There are a lot of exponential functions

in source code but only several of them are

heavily employed in most common chemical

computations tasks. For example while

computing benzene molecule the exp() function

is executed a few millions times. One of the

exp() function hot spots is the subroutine

responsible for functional computation in solving

the Hartree-Fock equation.

Exponential function

Many hardware examples of single precision FP

exponential function implementations can be

found [3,4,5,6] contrary to efficient double

precision standard ones [7], which are unknown

to the authors. This disproportion results from

the fact that commonly known table-based or

polynomial methods are not straightforward

applicable to this double precision elementary

function. Therefore some novel solutions were

adopted to the proposed exp() calculation

module not only to preserve compatibility to

double precision standard but also to achieve

high processing speed (200 MHz) and satisfying

accuracy. The exp() module is fully pipelined

(max. pipeline latency is 28 clks). Equations (1)

and (2) are a mathematical background of exp()

module solution presented hereby. Eq. (1)

produces directly the final result exponent field -

2
a
. Eq. (2) is implemented using 3 independent

Look-Up Table (LUT) memories: e
b1

, e
b2

,

e

b3
.

The expression p is a very small number

therefore the formula e
p
 is approximated by 1+p

according to Taylor expansion series (3).

 e
x
 = e

a*ln2+b
= 2

a
.e

b
 (1)

 e
b
= e

b1
⋅e

b2
.e

b3
.e

p
 (2)

 e
p
= 1 + p + ... (3)

The final result is the product of partial exp()

expressions according to (2). Each LUT memory

(Fig.1) has 9-bit wide input (optimal for Virtex 4

512×32bit BRAMs) which allows to spare much

logic resources (that would be otherwise

absorbed by one huge LUT) at the expanse of

two additional multipliers. The sign of the input

argument is considered only in integer part, (1)

expression a, which results in further drop of

occupied area.

adjusting

LUT MSB

e
b1

X X

X

Conversion to Fixed point number

X

ln(2) X

3 x 9 bit 52-27 bit

Taylor

e
p

-

Sign migration unit

LUT MID

e
b2

LUT MSB

e
b3

Floating point number Sign

Mantissa Exponent

Fig. 1. Block diagram of exp() module.

Dedicated fixed-point, non-zero-input argument

and reduced-width multipliers are employed

which results in area decrease and increase of

speed. Instead of multiplying shift and add

operation is performed (Fig.2.).

Multipliers are fed with adjustable width of the

argument depending on the number of guard bits

that may vary from 0 to 8. Multipliers outputs are

also determined by a number of guard bits.

X

1 0000.... A1243..... A124344543535535.....

LUT2 output:53bits + guard bits LUT1 output: 53 bits + guard bits

Result

>> +

Fig. 2. Non-zero-input argument

multiplier

Conclusion

Double precision exponential module was design

and also profiling of Gaussian was performed

which resulted in precise information on exp()

function instances in the code. The main

challenge that authors are to face now is

integration of exp() modules with extracted parts

of the source so the whole system achieves

expected speedup. The VHDL language has been

chosen for the implementation together with

Aldec Active-HDL environment.

References

[1] SGI RASC RC100 Blade Manual, version 2.1

http://techpubs.sgi.com/library/manuals/4000/007-

4718-006/pdf/007-4718-006.pdf.

[2] Gaussian 03 Online Manual, update 02

http://www.gaussian.com/g_ur/g03mantop.htm.

[3] Detrey J., de Dinechin F, Table-based polynomials

for fast hardware function evaluation, 16th IEEE

International Conference on Application-Specific

Systems, Architectures, and Processors (ASAP'05),

Samos, Greece, July 2005, pp. 328-333.

[4] Doss C.C., Riley R.L., Jr., FPGA-Based

Implementation of a Robust IEEE-754 Exponential

Unit, 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines

(FCCM’04), pp. 229- 238.

[5] Bui H.T., Tahar S., Design and Synthesis of an

IEEE-754 Exponential Function, 1999 IEEE Canadian

Conference on Electrical and Computer Engineering

Shaw Conference Center, Edmonton, Alberta, Canada

May 9-12 1999, pp. 450-455 vol.1.

[6] Tang P., Table-Driven Implementation of the

Exponential Function in IEEE Floating-Point

Arithmetic, Argonne National Laboratory, ACM

Transactions on Mathematical Software (TOMS),

Volume 15 , Issue 2 (June 1989), pp. 144 – 157.

http://techpubs.sgi.com/library/manuals/4000/007-4718-006/pdf/007-4718-006.pdf
http://techpubs.sgi.com/library/manuals/4000/007-4718-006/pdf/007-4718-006.pdf
http://www.gaussian.com/g_ur/g03mantop.htm

	Abstract
	Gaussian
	Profiling of the Gaussian
	Exponential function
	Conclusion

