

An Attempt at Face Detection on an SRC-6

David Meixner, Volodymyr Kindratenko

NCSA, UIUC

dmeixner@uiuc.edu, kindr@ncsa.uiuc.edu

1. Introduction

Object detection is an important area of image

processing. Specifically, face detection finds uses in

image retrieval, surveillance, and many other

applications. Because real-time processing may be

desirable in some applications, it is useful to find fast

algorithms and hardware that can perform this

operation. One such algorithm for face detection that

has proven to be fast is found in Intel’s Open Source

Computer Vision Library (OpenCV) [1].

While the OpenCV face detection implementation

works well, it still does not execute in real-time. In this

work, we describe an attempt at implementing the same

algorithm as used in OpenCV on an SRC-6

reconfigurable computer [2]. The SRC-6 MAP Series

E processor is comprised of two FPGAs, which allows

us to take advantage of parallelization and obtain

increased performance from pipelined loops. These are

two features commonly found in signal processing

designs, so it was expected that this algorithm would

execute faster on SRC-6. In the end, we found

however that due to limitations on FPGA resources and

the algorithm structure, the desired speedup was not

achieved. However, this work has led to a better

understanding of the algorithm structure and types of

codes that work well on SRC-6.

2. The Algorithm

The face detection algorithm used here was

originally developed by Viola and Jones [3]. It is a

statistical method that uses a set of Haar-like features

and a cascade of boosted classifiers. As a general

overview, the algorithm begins by scanning an image

with a search window of size 20x20 pixels. It then

compares the search window to a set of features,

grouped into stages. If the window and features of the

first stage are statistically close enough, then the

window is compared to a set of features in the next

stage. If at any stage, a given similarity threshold is not

met, the window is declared to be a non-face. On the

other hand, if all stages pass, then the window is

declared a face (Figure 1). This process is repeated

throughout the entire image and for increasing window

sizes. The features used are a set of black and white

rectangles (Figure 2).

Figure 1: Cascaded classifier

Figure 2: Examples of Haar-like features

The search window is compared to the features by

summing up the pixel values over the entire feature

region with a negative weighting, and summing up the

pixel values over the black areas of the region with a

positive weighting (Figure 3).

Figure 3: Comparing the search window to a feature

Therefore, it is necessary to have a fast way to compute

the sum of pixels in a rectangular region. This is done

by creating a summed area table of the entire image. A

summed area table simply contains the sum of all pixels

to the left of and above a given location (Figure 4) and

the area of any rectangular region (r) is given by four

table lookups:

RecSum(r) = SAT(x,y) + SAT(x+w,y+h) –

SAT(x,y+h) –SAT(x+w,y).

Figure 4: Calculating the summed area table

3. Implementation on the SRC-6

One way to implement this algorithm is to simply

move a search window through an entire image,

comparing the window to the features, and repeating

the process with increasing window sizes. The pseudo

code for one comparison is shown in Figure 5. As

stated in the previous section, to calculate the sum of

pixels for a rectangular region, 4 table lookups are

needed. Since each feature can be described by up to

three rectangular regions (1 white and 2 black), a total

of 12 lookups are needed in order to enable a fully

pipelined FPGA implementation with a single clock

cycle access to all the necessary data. Because the

SRC-6 has only 8 onboard memory banks, all 12

lookups cannot be performed in one clock period, so it

is not possible to pipeline this loop using only one

clock per iteration. Also, because of the accumulator

for the stage sum, as well as the early termination

condition, this loop cannot be fully unrolled.

Figure 5: Feature comparison subroutine

4. An Alternative Implementation

In the original OpenCV implementation of the

algorithm, the size of the search window was increased

at each iteration, requiring larger and larger search

windows. If instead the search window is kept fixed (at

20x20 pixels) and the image is shrunk on each

iteration, the search window size remains small. This

means that the contents of the search window can be

stored in the available BRAM instead of the onboard

memory, which implies one is no longer limited by

having only 8 memory banks to work with. Instead,

several search windows can be analyzed

simultaneously, and now the limitation is the number of

search windows that can be run simultaneously given

limited FPGA resources.

By using both of the FPGAs available in the SRC-6,

a total of seven search windows can be compared

simultaneously. This method gives a speedup over the

original implementation because of the parallelization,

as well as the loop in Figure 5 now being fully

pipelined with one clock per iteration. However, for an

image of size 640x480, this implementation only runs

at about 0.5 frames per second (fps) whereas an ideal

real-time application would run at 30 fps.

5. Conclusions

In this work, we examined the implementation of a

face detection algorithm on an SRC-6 reconfigurable

computer. It was originally expected that considerable

speedup would be achieved on this particular hardware.

However, limitations from the code that could be fully

pipelined and the limited FPGA resources prevented

this hardware from achieving faster execution. While

nothing can be done about the former condition, the

latter can be improved if more FPGA resources were

available. If this were the case, more search windows

could be analyzed simultaneously, implying the

execution speed is proportional to the size of the

FPGA.

6. References

[1] G. Bradski, A. Kaehler, V. Pisarvesky, “Learning-

Based Computer Vision with Intel’s Open Source Computer

Vision Library”, Intel Technology Journal, May 2005.

[2] SRC Computers Inc., SRC Systems and Servers

Datasheet, Colorado Springs, CO, 2005.

[3] P. Viola, M. Jones, “Rapid Object Detection using a

Boosted Cascade of Simple Features,” IEEE CVPR, 2001.

