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Abstract 
  
 The Scalable Parallel Random Number 
Generators (SPRNG) library is widely used for 
scientific applications. A hardware implementation of 
SPRNG on Xilinx Virtex II Pro FPGAs introduces 4-15 
times speedup over 2.8GHz Pentium 4 processors. The 
Hardware Accelerated Scalable Parallel Random 
Number Generators (HASPRNG) library produces 
identical results with SPRNG. This paper describes the 
implementation of HASPRNG, the verification 
platforms, and its performance. 
 
1. Introduction 
  
 The SPRNG library was developed to support 
large numbers of parallel, independent streams of 
random numbers for supercomputing applications such 
as Monte Carlo simulations [1]. SPRNG consists of 6 
types of random number generators: Modified Lagged 
Fibonacci Generator (Modified LFG), 48bit Linear 
Congruential Generator with prime addend (48bit 
LCG), 64bit Linear Congruential Generator with 
prime addend (64bit LCG), Combined Multiple 
Recursive Generator (CMRG), Multiplicative Lagged 
Fibonacci Generator (Multiplicative LFG), and Prime 
Modulus Linear Congruential Generator (PMLCG). 
This paper introduces the Hardware Accelerated 
Scalable Parallel Random Number Generators 
(HASPRNG) library which seeks to accelerate each of 
the SPRNG generators using FPGAs. In order to 
simplify adoption of HASPRNG for users, the 
HASPRNG produces identical results to SPRNG for 
the same generator, parameters, and seeds. The 
programming interface is also nearly identical to 
simplify integration with existing codes. 

 
2. HASPRNG Implementation  
  
 Each of the SPRNG library random number 
generators are implemented in HASPRNG. We now 

give a brief overview of each generator and its 
hardware implementation. The Modified LFG uses 
different architectures depending on whether the lag 
values are even or odd [2]. The generator produces a 
random number every clock cycle.  
 The two LCGs have the same architecture. The 48 
and 64bit LCGs are characterized by the following 
equation: 

Z(n) = a × Z(n-1) + p (Mod M)
where p is a prime number, a is the multiplier, and 
Z(n) is the nth random number. M is 248 for the 48bit 
LCG and 264 for the 64bit LCG. The LCGs use 7 stage 
pipelined multipliers. Thus, the LCGs in HASPRNG 
transform the equation as follows: 

Z(n) = a’ × Z(n-8) + p’ (Mod M) 
a’ = a8, p’= p × (a +a +a +a +a +a +a +1)7 6 5 4 3 2 1

This equation allows the generator to generate a 
random number in each clock cycle. 
 The CMRG satisfies the following equations: 

Z(n) = X(n) + Y(n) ×232 (Mod 264) 
Y(n)=107374182×Y(n-1)+104480×Y(n-5)(Mod 231-1) 
where X(n) is generated by 64 bit LCG and Z(n) is the 
resulting random number. The architecture has two 
parts, each generating a partial result. The first part is a 
64bit LCG as above, and the second part is the 
generator having two lag factors. The second part is 
composed of 2 multipliers, 4 deep FIFO registers, and 
combinational logic. The CMRG generates a random 
number every other clock cycle.  
 The PMLCG implements the following equation: 

Z(n) = a × Z(n-1) × 232 (Mod 261-1) 
where a is a multiplier and Z(n) is the resulting 
random number. The PMLCG uses 4 two-stage 
pipelined multipliers. The PMLCG generates a 
random number every other clock cycle. 
 The multiplicative LFG satisfies the following 
equation: 

Z(n) = Z(n-k) * Z(n-l) (Mod 264) 
where k and l are time lags and Z(n) is the resulting 
random number. The MLFG uses dual port RAMs 
(DPRAMs) to hold the previous results (lags). The two 
values read from the DPRAMs are fed into a multiplier. 



The multiplier output is stored back to the two 
DPRAMs. The MLFG generator produces a random 
number every clock cycle. 
 HASPRNG uses one of the PowerPC processors 
for initialization, seeding, and interface support to the 
host. The current implementation executes using 
Digilent XUP boards containing Xilinx XC2VP30 
FPGAs. Work to port the HASPRNG library to the 
Cray XD1 platform is in progress. Support for other 
FPGA parts (e.g. Spartan 3, Virtex 4/5, and Altera) is 
also in progress.  
 
3. HASPRNG Performance 

  
 HASPRNG generators provide random numbers 

faster than processors. Table 1 shows the performance 
summary for HASPRNG, where MRNS represents 
millions of random numbers generated per second. 
HASPRNG achieves 4-15 times speedup over 2.8 
GHz Pentium 4 processors for each copy of the 
random number generators. Table 2 shows the 
hardware requirements and maximum clock frequency 
report on the XUP board. Obviously, additional 
streams can be easily added to the FPGAs providing 
additional speedup.  
 

Table 1. HASPRNG Performance 
 2.8GHz P4 FPGA SpeedUp 

ALFG 19.3 MRNS 100 MRNS 5.2X 
LCG48 20.3 MRNS 100 MRNS 4.9X 
LCG64 6.6 MRNS 100 MRNS 15.2X 
CMRG 3.2 MRNS 50 MRNS 15.6X 
MLFG 10.4 MRNS 66.7MRNS 6.4X 

PMLCG 7.3 MRNS 50 MRNS 6.8X 
 
Table2. HASPRNG Hardware Usage and Clock 

Frequency on XC2VP30 
Hardware Usage 

 Slices 
(13696) 

BRAM 
(136) 

Multiplier 
(136) 

Clock 
Rate 

(MHz) 

ALFG/E 1882(13%) 48(35%) - 105 

ALFG/O 1904(13%) 48(35%) - 101 

LCG48 3231(23%) 33(24%) 12 (8%) 103 

LCG64 4072(29%) 9(6%) 20 (14%) 101 

CMRG 5482(40%) 17(12%) 20 (14%) 101 

MLFG 1710(12%) 41(30%) 10 (7%) 68 

PMLCG 1984(14%) 17(12%) 16 (11%) 78 

 
4. HASPRNG Verification 
  
 For verification of HASPRNG generators, each of 
them is compared to its SPRNG counterpart to ensure 
bit-equivalent behavior. Because we wish to test each 
configuration of generator and parameter set with 

several different initial seeds [1], the number of test 
cases becomes impractical for off-line verification. 
Hence, the SPRNG were ported to execute on one of 
the PowerPC processors. Figure 1 illustrates the 
HASPRNG verification architecture. 
 For the regression testing, a DPRAM is employed 
for 128KB data transfer. When data is full in the 
DPRAM, the local controller (Cont_1) directs the 
master controller (Cont_2) to pause HASPRNG 
operation. The PowerPC reads data from both SPRNG 
and HASPRNG, and verify the HASPRNG data by a 
bitwise XOR function. When the 32K random 
numbers are checked, the PowerPC allows the 
controller (Cont_2) to resume HASPRNG operations. 
Using this architecture, each HASPRNG generator has 
been verified with over 100 million random numbers.  
 

 
Figure 1. Verification of HASPRNG 

 
5. Conclusions 
  
 HASPRNG was verified with a substantial set of 
dynamically generated random numbers. HASPRNG 
shows good speedup relative to SPRNG. Based on 
these reasons, HASPRNG should help contribute to 
computational science and the practical ability to 
exploit high performance reconfigurable computing 
resources. The HASPRNG library is open source. 
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