
Hardware Accelerated Scalable Parallel Random Number Generators

JunKyu Lee, Gregory D. Peterson, Robert J. Harrison
The University of Tennessee

Abstract

 The Scalable Parallel Random Number
Generators (SPRNG) library is widely used for
scientific applications. A hardware implementation of
SPRNG on Xilinx Virtex II Pro FPGAs introduces 4-15
times speedup over 2.8GHz Pentium 4 processors. The
Hardware Accelerated Scalable Parallel Random
Number Generators (HASPRNG) library produces
identical results with SPRNG. This paper describes the
implementation of HASPRNG, the verification
platforms, and its performance.

1. Introduction

 The SPRNG library was developed to support
large numbers of parallel, independent streams of
random numbers for supercomputing applications such
as Monte Carlo simulations [1]. SPRNG consists of 6
types of random number generators: Modified Lagged
Fibonacci Generator (Modified LFG), 48bit Linear
Congruential Generator with prime addend (48bit
LCG), 64bit Linear Congruential Generator with
prime addend (64bit LCG), Combined Multiple
Recursive Generator (CMRG), Multiplicative Lagged
Fibonacci Generator (Multiplicative LFG), and Prime
Modulus Linear Congruential Generator (PMLCG).
This paper introduces the Hardware Accelerated
Scalable Parallel Random Number Generators
(HASPRNG) library which seeks to accelerate each of
the SPRNG generators using FPGAs. In order to
simplify adoption of HASPRNG for users, the
HASPRNG produces identical results to SPRNG for
the same generator, parameters, and seeds. The
programming interface is also nearly identical to
simplify integration with existing codes.

2. HASPRNG Implementation

 Each of the SPRNG library random number
generators are implemented in HASPRNG. We now

give a brief overview of each generator and its
hardware implementation. The Modified LFG uses
different architectures depending on whether the lag
values are even or odd [2]. The generator produces a
random number every clock cycle.
 The two LCGs have the same architecture. The 48
and 64bit LCGs are characterized by the following
equation:

Z(n) = a × Z(n-1) + p (Mod M)
where p is a prime number, a is the multiplier, and
Z(n) is the nth random number. M is 248 for the 48bit
LCG and 264 for the 64bit LCG. The LCGs use 7 stage
pipelined multipliers. Thus, the LCGs in HASPRNG
transform the equation as follows:

Z(n) = a’ × Z(n-8) + p’ (Mod M)
a’ = a8, p’= p × (a +a +a +a +a +a +a +1)7 6 5 4 3 2 1

This equation allows the generator to generate a
random number in each clock cycle.
 The CMRG satisfies the following equations:

Z(n) = X(n) + Y(n) ×232 (Mod 264)
Y(n)=107374182×Y(n-1)+104480×Y(n-5)(Mod 231-1)
where X(n) is generated by 64 bit LCG and Z(n) is the
resulting random number. The architecture has two
parts, each generating a partial result. The first part is a
64bit LCG as above, and the second part is the
generator having two lag factors. The second part is
composed of 2 multipliers, 4 deep FIFO registers, and
combinational logic. The CMRG generates a random
number every other clock cycle.
 The PMLCG implements the following equation:

Z(n) = a × Z(n-1) × 232 (Mod 261-1)
where a is a multiplier and Z(n) is the resulting
random number. The PMLCG uses 4 two-stage
pipelined multipliers. The PMLCG generates a
random number every other clock cycle.
 The multiplicative LFG satisfies the following
equation:

Z(n) = Z(n-k) * Z(n-l) (Mod 264)
where k and l are time lags and Z(n) is the resulting
random number. The MLFG uses dual port RAMs
(DPRAMs) to hold the previous results (lags). The two
values read from the DPRAMs are fed into a multiplier.

The multiplier output is stored back to the two
DPRAMs. The MLFG generator produces a random
number every clock cycle.
 HASPRNG uses one of the PowerPC processors
for initialization, seeding, and interface support to the
host. The current implementation executes using
Digilent XUP boards containing Xilinx XC2VP30
FPGAs. Work to port the HASPRNG library to the
Cray XD1 platform is in progress. Support for other
FPGA parts (e.g. Spartan 3, Virtex 4/5, and Altera) is
also in progress.

3. HASPRNG Performance

 HASPRNG generators provide random numbers

faster than processors. Table 1 shows the performance
summary for HASPRNG, where MRNS represents
millions of random numbers generated per second.
HASPRNG achieves 4-15 times speedup over 2.8
GHz Pentium 4 processors for each copy of the
random number generators. Table 2 shows the
hardware requirements and maximum clock frequency
report on the XUP board. Obviously, additional
streams can be easily added to the FPGAs providing
additional speedup.

Table 1. HASPRNG Performance
 2.8GHz P4 FPGA SpeedUp

ALFG 19.3 MRNS 100 MRNS 5.2X
LCG48 20.3 MRNS 100 MRNS 4.9X
LCG64 6.6 MRNS 100 MRNS 15.2X
CMRG 3.2 MRNS 50 MRNS 15.6X
MLFG 10.4 MRNS 66.7MRNS 6.4X

PMLCG 7.3 MRNS 50 MRNS 6.8X

Table2. HASPRNG Hardware Usage and Clock

Frequency on XC2VP30
Hardware Usage

 Slices
(13696)

BRAM
(136)

Multiplier
(136)

Clock
Rate

(MHz)

ALFG/E 1882(13%) 48(35%) - 105

ALFG/O 1904(13%) 48(35%) - 101

LCG48 3231(23%) 33(24%) 12 (8%) 103

LCG64 4072(29%) 9(6%) 20 (14%) 101

CMRG 5482(40%) 17(12%) 20 (14%) 101

MLFG 1710(12%) 41(30%) 10 (7%) 68

PMLCG 1984(14%) 17(12%) 16 (11%) 78

4. HASPRNG Verification

 For verification of HASPRNG generators, each of
them is compared to its SPRNG counterpart to ensure
bit-equivalent behavior. Because we wish to test each
configuration of generator and parameter set with

several different initial seeds [1], the number of test
cases becomes impractical for off-line verification.
Hence, the SPRNG were ported to execute on one of
the PowerPC processors. Figure 1 illustrates the
HASPRNG verification architecture.
 For the regression testing, a DPRAM is employed
for 128KB data transfer. When data is full in the
DPRAM, the local controller (Cont_1) directs the
master controller (Cont_2) to pause HASPRNG
operation. The PowerPC reads data from both SPRNG
and HASPRNG, and verify the HASPRNG data by a
bitwise XOR function. When the 32K random
numbers are checked, the PowerPC allows the
controller (Cont_2) to resume HASPRNG operations.
Using this architecture, each HASPRNG generator has
been verified with over 100 million random numbers.

Figure 1. Verification of HASPRNG

5. Conclusions

 HASPRNG was verified with a substantial set of
dynamically generated random numbers. HASPRNG
shows good speedup relative to SPRNG. Based on
these reasons, HASPRNG should help contribute to
computational science and the practical ability to
exploit high performance reconfigurable computing
resources. The HASPRNG library is open source.

6. Acknowledgements

 This work was supported by the National Science
Foundation grant, NSF CHE-0625598, and the authors
gratefully acknowledge prior support for related work
from the University of Tennessee Science Alliance.

7. References

[1] Scalable Parallel Pseudo Random Number Generators

Library, http://sprng.fsu.edu/
[2] Y. Bi, G. D. Peterson, G. L. Warren, and R. J. Harrison,

“Hardware acceleration of parallel lagged-Fibonacci
pseudo random number generation,” Proc of Intl Conf
on Engineering of Reconfigurable Systems and
Algorithms. CSREA, 2006.

