
An Automated Micro-architecture Design Tool for FPGAs

Matthew Areno
Utah State University

Logan, UT 84341
matthewareno@cc.usu.edu

Brandon Eames
Utah State University
Logan, Utah 84341

beames@engineering.usu.edu

Aravind Dasu
Utah State University
Logan, Utah 84341

dasu@engineering.usu.edu

Abstract
This paper proposes a novel approach to the
automated generation of hardware micro-
architectures targeting FPGA devices. The approach
offers both high level architecture synthesis and
VHDL generation based on dataflow graphs, as well
as the generation of an architecture-level
functional/performance simulator that can be used for
quick and accurate testing of the design. We
demonstrate the use of this approach through the
derivation of architectures to implement
computational kernels commonly encountered in
Molecular Dynamics simulations.

1 Introduction
It is well known that the performance of

applications on Field Programmable Gate Arrays
(FPGAs) is highly dependent on the underlying
sophistication of micro-architecture design features,
such as pipelining and concurrency. The complexity of
real world applications and algorithms tends to push
the design burden farther away from an automated
process and into the realm of expert VSLI design
engineers. While there have been numerous efforts to
automate the conversion of algorithms written in C or
C++ to synthesizable HDL, there still remains a large
amount of research that needs to be carried out to fully
exploit those efforts. Instead of focusing on the
syntactic aspects of high level languages, we intend to
compliment other approaches by focusing on the
semantics. We propose a methodology to
automatically derive the micro-architecture for an
algorithm based on the machine independent control-
data-flow-graph representation of the algorithm. To
facilitate a rapid evaluation of both the functionality
and performance of the generated micro-architecture,
we provide a C++, approximately-cycle accurate,
simulator which implements the salient features of the
micro-architecture, but in a software-based
environment amenable to rapid-turnaround testing and
evaluation.

Using FPGAs as targets, this tool creates both a
VHDL and C++ representation of a given loop-
unrolled dataflow graph (DFG). Generation of these
DFGs is facilitated through the use of a new visual
modeling tool, based on the Generic Modeling

Environment (GME) [1]. The DFGs are composed of
standard mathematical operations, such as addition,
multiplication etc, and capture the semantics of a
software algorithm.

From these DFGs, a micro-architecture is
generated by way of a modified force-directed
scheduler (FDS) [2]. Our modified FDS
implementation is capable of performing loop
unrolling, critical path relaxation, and graph
decomposition, in an attempt to derive a near-optimal
hardware design implementation. The FDS
implementation simultaneously determines the
schedule and resource allocation appropriate for a
given loop-unrolled DFG. From this information, a
VHDL representation is generated that targets the
Xilinx ISE development environment. Additionally, a
C++ simulator is also generated that may be used to
evaluate the design and provide quick feedback on the
impact of design alternatives.

To elucidate the details of this methodology and
associated tool, the paper has been structured in the
following manner. Section 2 will present related work
that has been performed in this area. Section 3 will
present information of the development of the GME
meta-model and DFG generation. Section 4 will
discuss the FDS implementation and environment
generation prior to the VHDL and C++ code
generators. Section 5 will discuss the generation of
VHDL and C++ code representations. Section 6 will
show the results that have been obtained through the
use of the tool. Finally, section 7 will present
additional work to be done and the conclusion of this
paper.

2 Related Work
Several tool are available today capable of

generating hardware architectures directly from higher
level languages, such as C. These include, but are not
limited to, Handel-C [3], HardwareC [4], Mitrion-C
[5], and PACT HDL [6]. In addition to C-type
languages, other tools derive architectures from
assembly language [7], Matlab [8], and Simulink [9].
Such approaches attempt to raise the level of
abstraction offered to the user to support hardware
design, presenting an environment that is more
familiar to a larger community of developers. The

downside of this approach is that by using too high of
an abstraction level, the tool is not able to capture all
of the relevant information that may be available
through the designer. The development of hardware
architectures can be better optimized when the tool
works together with the designer, not in place of a
designer. Higher level languages should be used as a
way of defining what the architecture is doing, not
how it is doing it.

PACT HDL [6] was developed with the idea of
creating power aware architectures. However, the
scheduling methodology used does not lend itself to
low resource allocation. Additionally, it does not
support the use of any other scheduling methodologies
aside from a window size, priority-based approach
using ASAP and ALAP scheduling. HardwareC [4]
suffers from a lack of abstraction, as the input into the
program is virtually identical to Verilog, with only a
few minor syntactical differences. Additionally,
pipelining, a method commonly used in FPGA
architectures, is not supported. Handel-C [3] provides
one of the strongest emulations of the C languages, but
requires the designers to specify parallel portions of
code, rather than having the program automatically
derive this information. Part of this is due to its lack
of support for loop unrolling, a technique commonly
used to expose instruction level parallelism. The
designer should be able to interact with the program in
the creation of the design, but not be responsible for
every detail. Mitrion-C [5] appears to be the strongest
of the candidate C-to-HDL programs. Rather than
generating a schedule for the received code, a network
is created that is capable to moving data from one
processing element to another. The architecture is
then presented with a data packet switching problem,
rather than an instruction scheduling problem.
Mitrion-C also uses a virtual processor, optimized
based upon the code received, to execute instructions.
The downside of this approach is that the program
raises the level of abstraction so far that it almost
prohibits the designer from having any impact on the
generated hardware architecture. This problem
manifests itself specifically when code relies upon
data being entered at run-time. Without the help of the
designer, hardware generation tools have no way of
determining how often a segment of code may
execute, and will therefore have no way of properly
allocating resources to handle such code in an optimal
fashion. Mitrion-C therefore provides efficient, but
not optimal, hardware implementations.

The FREEDOM compiler [7] is a platform
independent HDL generator that can use any generated
assembly language file, along with an architecture
description file, to generate VHDL code. The
downside of working directly on assembly language

files, as opposed to C files, is the loss of critical
information declared in the C language. For instance,
the compiler removes name dependencies by
eliminating “unnecessary” writes to the same memory
location. For any system that makes use of volatile
variable, this can be critical. The tool also lacks the
ability to customize the hardware design to the needs
of the designer, but rather depends on the designer to
customize the input appropriately. A tool called
Compaan [8] translates algorithms specified in the
Matlab language into hardware architectures. At the
time this paper was written, no actual FPGA
implementation had been created yet, though it had
been discussed [10].

Additional relevant work is in the area of
Molecular Dynamics (MD), a collection of algorithms
used to analyze the interaction of molecules within a
closed environment. The driving force behind the
development of the tool described in this paper was to
verify, and possibly improve, an existing FPGA-based
implementation of a portion of a MD application [16].
The use of an FPGA for solving N-body problems,
such as MD, was explored by Lienhart et al [11].
Using application specific processors on FGPAs was
tested by Azizi et al [12]. Other attempts have been
made to separate portions of the calculation, such as
moving Lennard-Jones and Coulombic force
calculations onto an FPGA, which communicates with
the driving software, run on a standard CPU [13].
Further work has also been done in an attempt to
speedup time intensive operations, such as double-
precision floating-point division, through the use of
pipelining [14]. For our approach, we are using an
FPGA similar to [10], but with a novel architectural
approach discussed in [15] [16].

The novelty of the tool being presented here is not
in its ability to generate VHDL and C++
representations, but the method used to determine
resource allocation, create a schedule, and provide
multiple possible implementations based upon a set of
constraints given to the program through the use of a
modified FDS algorithm. The tool provides a visual
modeling environment to support interaction with the
designer, allow for the input of architecture critical
specifications and operational unit customization. The
development of this tool is divided into three
components: GME front-end, FDS implementation
and environment creation, and VHDL and C++ code
generation, shown in Figure 1. Each of these will now
be discussed.

3 GME Front-end
The Generic Modeling Environment (GME) is a

meta-programmable modeling framework that may be
used to create not only domain-specific models, but

corresponding domain-specific modeling languages.
GME does not provide inherent support for any one
specific domain, but rather may be used by the
developer to create custom modeling languages and
paradigms which encode the visual notations and rules
inherent to the domain and known by domain
engineers. Paradigms are similar to grammars used by
programming languages. Their purpose is to define the
rules for how elements within the language may be
used. Since GME does not provide native support for
any modeling language or paradigm, it must be
configured in order for the user to properly capture the
relationship between the real-world and the elements
defined within the GME model.

Although the GME model may do a very effective
job at modeling a given environment, it makes no
attempt to determine what the model is supposed to
mean. To decipher the meaning of a specific GME
model, an interpreter is created. Just as the keyword
"double" means nothing without a C or C++ compiler,
the same is true of a GME model without an
interpreter. The interpreter could therefore be
compared with a compiler, in that it is used to make
sense out of what is otherwise nothing more than a
collection of images.

The "syntax" that the interpreter uses is derived
from what is called the meta-model. A meta-model is
what is created in GME as the model of a domain
specific modeling language. The meta-model
implemented for this paper is one that models DFGs
and therefore facilitates the creation of nodes, edges,
operational units, and architecture specifications. It
also allows the scaling to large designs by handling

multiple DFGs within a single project. Once a DFG is
properly modeled, the interpreter analyzes the model
and creates data files that may be used by the force-
directed scheduler to determine a schedule for the
DFGs. The steps for how this was accomplished will
now be covered.

3.1 GME Meta-model
The GME Meta-model, shown in Figure 2, offers

a hierarchical structure for developing hardware
designs. A Design may contain multiple dataflow
graphs, represented by the DataFlowGraph model, and
must contain one, and only one, ArchDesc model,
used to enter specifications about the target
architecture. ArchDesc models contain actual
operations, which consist of standard mathematical
operations (i.e., addition or subtraction), logic
operations (i.e., less than or equal to), and I/O
operations (i.e., inputs or outputs). Each operation has
an attribute for the area consumption and latency.
Currently, such fields must be specified directly by the
designer, but future work will integrate a pre-
generated library of these values, corresponding to
their implementation on specific FPGA chips. An
additional atom, called the Chipset, is required and is
used to specify the target architecture, as well as
constraints to be imposed on the generated hardware
architecture.

3.2 GME Interface
The GME meta-model is never actually seen by

the designer. Rather, it is used to govern and interpret
the design. Using GME, the designer may create a
Design, with its associated ArchDesc and
DataFlowGraph models. The designer inserts
whatever components will be needed for the design
into the ArchDesc model, and then creates instances of
these customized components in the DataFlowGraph
model. Connections may then be instantiated to create
precedence relationships between multiple nodes
within the DFG.

3.3 Interpreter
Once a design has been created in GME, an

interpreter is used to parse the design and generate a
DFG file and architecture description file that will be
used, by the FDS implementation, to derive the
hardware architecture. The architecture description
file uses the following syntax:

“OPERATIONS”
<operation type> <operation latency> <operation
area>
….
“CONSTRAINTS”
<type of constraint> <constraint value>

Figure 1 – Overall tool flow.

Operation types were listed in section 3.1. As defined
by the user in the ArchDesc model, the latency and
area of each operational unit is also declared. The
constraints currently supported by the tool are listed in
Figure 2 under the Chipset atom. The dataflow graph
files use this syntax:

//Node declaration
“NODE” <node id number> <operation type>
…..
//Edge declaration
“CONNECTION” <source node ID> <destination

node ID> <parent type>
…..

Each operation declared in GME is given a unique ID
number which is used to identify the node in the DFG
file. Connections are made between two nodes by
declaring a connection, and then providing the
corresponding node ID numbers for the source and
destination. The parent type is used to preserve the
distinction in non-commutative operations, like
subtraction and division. The parent type can be left,
right, or both, to emulate first, second, and both
operators, respectively.

The goal of this approach is to provide an
interface where the designer can still specify certain
constraints on the system which can have a large
impact on the overall system design, but still provide
an high enough level of abstraction to make the tool
intuitive to use. The generated files may then be used
by the designer to invoke the FDS scheduler
implementation to derive the hardware architecture.

4 FDS Implementation and Environment
Creation

The FDS algorithm used in this tool is a modified
version of the original algorithm [2]. The original
algorithm prioritizes the scheduling of nodes with a

DFG based upon their location in regards to the
critical path of the system, as well as their impact on
resource allocation. This is done by creating a domain
of values for each node, representing the possible
starting and completion times that each node may be
assigned. Nodes along the critical path of the system
are scheduled as-soon-as-possible (ASAP), which then
further constrains the starting and completion times of
other nodes within the system. Nodes not on the
critical path are scheduled by using a percentage
calculation that determines the effect on the resource
requirements of the system by scheduling the nodes at
specific times. Since the FDS algorithm attempts to
minimize the resource needs of a system, the nodes are
scheduled in a manor that accommodates this
constraint.

In an attempt to utilize the powerful
parallelization capabilities of FPGAs, loop unrolling is
used to expose instruction level parallelism. In
addition, the ability to perform critical path relaxation
is also provided to the designer. Traditional FDS
discovers the critical path of the graph, and imposes a
requirement that all operations complete at, or before,
the completion of all nodes on the critical path.
Critical path relaxation facilitates the designation of a
constraint which allows operations in the DFG to
complete up to a fixed time after the length of the
critical path of the graph. Critical path relaxation can
result in further reductions to resource requirements
when flexibility exists in the execution time
requirements of the system. Experimental results
showed that the FDS algorithm did not function as
well when critical path relaxation was employed. To
combat this problem, a new approach was taken to
modify the available start and completion times of
nodes with the DFG. This new algorithm attempts to
balance the extra time allotted by critical path
relaxation among the multiple number of iterations
instantiated through loop unrolling. Additionally, it

Figure 2 – GME meta-model.

reduces the amount of time needed to derive an
implementation using the FDS algorithm by reducing
the number of operations that must be considered at
each time step. To implement this, the following
algorithm is used, shown in Figure 3. Based up the
iteration each node is associated with, and the total
number of iterations being implemented, a certain
amount is added to the earliest start time and latest
completion time, proportional to the amount of
additional time allocated through the use of critical
path relaxation. The results of this implementation
will be discussed in section 6.

The environment is the collection of all values
and variables needed in order to generate a VHDL
and C++ representation of the derived hardware
architecture. To create the environment, a collection
of variables are instantiated and populated using the
results of the FDS implementation. This includes a
list of all nodes in the DFG, as well as all required
operational units and the number of each that is
required to execute the generated schedule. To
manage this information, the environment is created
and used to create the VHDL and C++ code.

An important step to creating the environment is
to derive the required memory needs within the DFG.
Memory requirements within a DFG are the result of
a difference in the time when values are produced
and consumed. To determine where memory
elements would be needed, a simple algorithm was
developed that compares the start time, plus latency,
of each node with the start time of each of its
predecessors. Any time these two values are not
equal, a memory element is instantiated. To support
the reuse of memory elements, shift registers are used
to store the data. This allows for an optimization in
the number of elements required by allowing reuse of
memory elements within a single iteration, as well as
between multiple iterations, when identical memory
needs are present. Whenever identical memory needs

exist, as measured by the depth of the shift register, if
the needs occur on separate clock cycles, the memory
element may be reused. Additional optimizations are
possible, but are left as future work and will be
discussed in section 7.

The final step in creating the environment is to
develop an ordered list of nodes based upon their
scheduled execution time. The purpose of such a list
is to reduce the computational complexity of the
VHDL and C++ code generation. By pre-sorting the
nodes in the DFG, the algorithm must execute only
on clock cycles where changes are needed.
Otherwise, the computational complexity of
analyzing what changes need to occur on what clock
cycle is O(mn), where m represents the number of
clock cycles in the derived schedule, and n represents
the number of nodes. With the ordered list, the
complexity reduces to O(n), which can results in a
large performance gain, especially considering this
algorithm must execute during both the VHDL and
the C++ code generation.

The implementation of the modified FDS
algorithm and environment provide the designer with
another opportunity to customize the design by
specifying the number of loop unrolls to perform, as
well as the amount of critical path relaxation to
perform. It also may derive architectures with a
much smaller footprint, as opposed to traditional
implementations of the FDS algorithm. The memory
allocation method also removes the need for the
designer to determine such needs a priori.

5 VHDL and C++ Code Generation
 Once the environment has been properly

established, the program may then invoke the VHDL
and C++ code generators. The VHDL code may be
used to develop hardware architectures in Xilinx ISE.
The purpose of the C++ code is to provide the
designer with a simulator of the derived hardware

Figure 3 – Modified FDS algorithm.

architecture. This allows the designer to see the
results of modifications to the design without the
needed for time intensive synthesis and place and
route routines. The C++ simulation also allows the
designer to determine the number of clock cycles
required to complete execution of the derived
architecture. In this way, the designer is given fast
feedback on how modification to the architecture will
affect its results.
5.1 VHDL Code Generation

VHDL code generation entails the process
required to generate not only VHDL files, but also all
files that will be needed in order to instantiate Xilinx
IP Coregen components. To create a VHDL
representation of the derived hardware architecture
specific to Xilinx ISE, a main controller file is
needed. In addition, .xco and .vhd files are generated
an instance of each operational unit using Xilinx IP
Coregen. By using Coregen to generate operational
components, designers are provided with a maximum
amount of flexibility in how the component is
instantiated, i.e. latency, pipeline stages, and memory
initialization.

In addition to creating Coregen files, but prior to
the creation of the main controller file, a node to
operation mapping must be made. Each node in the
DFG must be associated with a specific operation
unit before the main controller file can be developed.
The mapping is performed by using a simple greedy
algorithm. This algorithm works by examining each
node in the system against the available execution
slots of the operational units. If an operational unit
has already been allocated to execute a node on a
given cycle, it is unavailable. If the operational unit
is not already allocated to another node, a mapping is
created and that operational unit’s status for that
clock cycle is set appropriately. Since all functional
units are assumed to be fully pipelined, the execution
of an operation effectively consumes only one issue
slot for each unit. The scheduler guarantees that at
least one operational unit will be available for every
node in the DFG at the required time.

The main controller file is the heart of the VHDL
generated code. Contained within the controller are
the initializations of the required operation units,
instantiations of signal to connect the operational
units to the main controller, and a case statement to
determine the flow of information through the
system. The case statement makes use of the ordered
list created during the environment generation. The
nodes in this list are traversed and a case is declared
for each unique time in which a node is scheduled.
Starting at the beginning, a new state is declared for
the starting time of the first node, and a local variable
designated to track the time is set equal to this value.

Once all data has been properly channeled, the
program moves to the next node and compares its
starting time with the current time value. If they are
the same, a new state is not needed and the data flow
statements to mange this node’s data exchanges are
made within the current state. Otherwise, a new state
is created, the current time is set equal to this node’s
start time, and the new data flow statements are made
in this new case. This continues until all nodes have
been visited.

The result of this process is a complete set of
files that may be used by Xilinx to synthesize the
derived architecture. The mapping, translate, and
place and route routines require a .ngc file for each IP
Coregen component, which is currently not
supported, but is included in the list of future work.
5.2 C++ Code Generation

The C++ code generation handles the creation of
a group of classes that may be used to simulate the
derived hardware architecture. The initial code
representation, whether done in C, Matlab, or
assembly language, merely shows what operation the
hardware is to perform. The purpose of the C++
representation is to show how the derived
architecture works. These classes emulate the
hardware generated previously in VHDL, and allow
the designer to test the architecture in a faster manner
than through synthesis of the hardware. For instance,
a primary concern of designer may be how quickly
the derived architecture can complete the required
calculations. The generated C++ simulator may be
used to quickly deliver such information, as well as
to determine performance metrics and the locations
of bottlenecks within the design.

The C++ representation is made using two
classes, the Element class and the Component class.
The Element class is used to represent each of the
different operational units that are currently
supported, containing information on the latency and
operation type of each unit. The Element class is
written using a template, allowing it to be used for
integer or pointing-point representations. The
Component class is similar to the main controller
created in the VHDL representation. It contains
functions for initializing and executing the design, as
well as retrieving the current status of the system.
These functions are automatically populated with the
required instances of Elements, as well as a switch
statement that works identically to the case statement
in VHDL. The designer is only required to call the
initialize function and execute function to simulate
the design. Functionality is provided to see the
current state of the system, but currently only returns
the local time. Additional changes are planned to
have this function display the current information

contained within each stage of the unit’s pipeline, as
well as data being stored or currently on connections.
This information would be similar to a register dump
on a standard microprocessor.

The goal of this portion of the program was to
provide the designer with a quick and easy way to
verify his/her design, as well as to implement
changes and see how they affect the design. By using
C++ to create this simulator, these goals have been
met. The designer may use any standard C++
compiler that supports the use of the STL to simulate
their design. Changes in the execution of these units,
such as pipeline stages, are easy to make. Rather
than having to re-synthesize the design, the designer
merely has to recompile the code to see how such
changes can affect the system.
6 Results

Several key new ideas were presented in this
paper. This section has been developed to show the
results of the implementation of these features.
Results will be presented on the modified FDS
algorithm, effects of critical path relaxation, and the
results of deriving a micro-architecture for a previous
MD implementation.

6.1 Modified FDS Algorithm Using Graph
Decomposition

To show the results of the graph decomposition
and modified FDS algorithm verses the original FDS
algorithm, implementations of the distance
calculation (DC) and Lennard-Jones potential
calculation (LJPC) were developed. The results of
these implementations using the original and
modified FDS algorithms are shown in Figures 4 and
5, respectively. These figures show the resulting
resource allocation for floating-point adders,
subtractors, and multipliers, using from 1 to 57
iterations of the DC unit and 1 to 40 iterations of the
LJPC unit. The required units using the modified,
graph decomposition method are labeled with a (gd)
next to the unit name. As shown in the DC imple-
mentation, the modified version derived architectures
needing only half the number as the original, on
average. The same is true of the LJPC
implementation.

The other strong support for this implementation
was in the reduction of time required to derive these
architectures, using the two approaches. Figure 6
shows the time required to derive each architecture,
as done on a Pentium 4, 2.0GHz computer. Each
version of the algorithm generated an architecture for
the LJPC unit, starting with a single iteration, up to a
total of 40 iterations. The time taken to derive each
architecture was measured and is presented in this
figure.

6.2 Critical Path Relaxation
The purpose of critical path relaxation (CPR) is

to show the possible changes in resource
requirements by relaxing the critical path by some
measure of time, or cycles. The results of this are
shown in Figure 7. This figure shows the change in
resource requirements as the critical path is relaxed,
starting at 0% relaxation to 100% relaxation, by
increments of 10%, using 57 iterations of the DC
unit. As can be seen in this graph, a CPR of only
10% resulted in a decrease of 75% of required
resources, verses no relaxation. As may also be
evident, at certain times plateaus are reached where
additional, but not substantial, relaxation may not
create increased benefit in reduction of resource

Figure 4 – Operational unit allocation for DC
unit with 100% CPR.

Figure 5 – Operational unit allocation for
LJCP unit with 100% CPR.

requirements. This type of information, together with

throughput, utilization, and latency constraints, can
greatly affect the automated generation of hardware
architectures.

6.3 MD Architecture Generation
The MD architecture referenced previously was

implemented in an attempt to produce run-time load-
balancing of an N-body problem. The result of this
architecture’s ability to perform such load-balancing
is shown in Figure 8. The purpose of this tool was to
validate the design initially created for this project.
The two main components of the MD algorithm, the
DC and LJPC, have been run through this tool and
generated the results shown in Figures 4 through 7.
From these results, analysis has been performed to
determine where the optimal solution lies. Due to the
load-balancing problem faced by N-body problems,
generating the entire architecture autonomously is a
very taxing problem, and currently beyond the
capabilities of this tool. However, it has verified our

initial design as being effective, and efficient, but
took only a very small fraction of the time.

In addition to verifying the generated VHDL, we
were able to use the generated C++ code to analyze
the performance of this architecture. We were
quickly able to determine the number of clock cycles
required to complete a given number of calculations,
as well as to generate information on the current state
of internal elements within the design. The values,
shown in Figure 6, were generated through the use of
the C++ simulator. Although this feature has not yet
been completely integrated into the C++ simulator at
this time, it has proven to be accurate and is currently
in the process of being included.

7 Conclusion
We have presented a new and novel

methodology for the automated development of
hardware architectures. We have used this tool to
verify our initial design and have found it to be
extremely successful at generating verifiably
functional code in both VHLD and C++ in a fraction
of the time. A large amount of future work remains
to be done in order to better customize the hardware
design. GME provides an excellent front- end that
greatly facilitates the incorporation of design
operations and constraint implementation.
Additional tools, such as Mozart, are also being
added to provide better constraint satisfaction and
optimization for those wishing to customize
architectures in the areas of latency, power, area, and
throughput.

7.1 Additional Work
Additional work still needs to be performed in

each other three major areas discussed in this paper.
Much of the work that still remains has been
discussed previously in this paper. Expansion of
supported elements in GME, an automated DFG
creation tool, and further constraint satisfaction
analysis are the three primary areas being explored at
this time. Given the results seen so far, we are
confident that the improvements being made will
help this tool to become an excellent resource for any
hardware designer.

Figure 6 – Time comparison of standard vs.
modified FDS algorithms.

Figure 7 – Comparison of resource
requirements for 57 iterations of the DC unit

and varying CPR.

References

[1] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi;
“The generic modeling environment"; Vanderbilt University,
Nashville, Tennessee, USA.
[2] Paulin, P.G. and Knight, J.P.; “Force-directed
Scheduling for the Behavioral Synthesis of ASIC’s”;
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, Vol.8, Iss.6, Jun 1989, Pages:661-
679.
[3] C. Inc., \Handel c compiler," http://www.celoxica.com.
[4] D. Ku and G. DeMicheli; “Hardware C - a language for
hardware design (version 2.0)"; Stanford, CA, USA, Tech.
Rep., 1990.
[5] I. Anders Dellson, Mitrionics; “Programming FPGAs
for high-performance computing acceleration";
http://www.mitrionics.com.
[6] Jones, A.; Bagchi, D.; Pal, S.; Tang, X.; Choudhary, A.;
Banerjee, P.; “PACT HDL: a C Compiler Targeting ASICs
and FPGAs with Power and Performance Optimizations”;
Proceedings of the 2002 International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems, 2002, pp. 188-197.
[7] Zaretsky, D.; Mittal, M.; Xiaoyong Tang; Banerjee, P.;
“Overview of the FREEDOM compiler for mapping DSP
software to FPGAs” in Field-Programmable Custom
Computing Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on, Vol., Iss., 20-23 April 2004 Pages: 37- 46..
[8] B. Kienhuis, E. Rijpkema, and E. Deprettere,
“Compaan: deriving process networks from matlab for
embedded signal processing architectures"; CODES '00:
Proceedings of the eighth international workshop on
Hardware/software codesign, pp. 13-17. New York, NY,
USA: ACM Press, 2000.
[9] Reyneri, L.M.; Cucinotta, F.; Serra, A.; Lavagno, L.;
“A Hardware/Software Co-design Flow and IP Library
Based on Simulink”; Proceedings of the 38th Conference on
Design Automation, 2001, pp. 593-598.

[10] E. Rijpkema, E. F. Dprettere, and B. Kienhuis;
“Compilation from matlab to process networks"; Signals,
Systems, and Computers, 2001. Conference record of the
thirty-fifth asilomar conference on, pp. 458-462.
Washington, DC, USA: IEEE, 2001.
[11] G. Lienhart, A. Kugel, and R. Manner, "Using floating-
point arithmetic on FPGAs to accelerate scientific N-Body
simulations," in Field-Programmable Custom Computing
Machines. Proceedings. 10th Annual IEEE Symposium on,
2002, pp. 182-191.
[12] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow,
"Reconfigurable molecular dynamics simulator," Proc. 12th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines. 2004, pp. 197-206.
[13] R. Scrofano and V. K. Prasanna, "Computing Lennard-
Jones Potentials and Forces with Reconfigurable Hardware",
Proc. International Conference on Engineering of
Reconfigurable Systems and Algorithms 2004, pp.284-292.
[14] Y. Gu, T. VanCourt, and M. C. Herbordt, "Accelerating
molecular dynamics simulations with configurable circuits,"
Computers and Digital Techniques, IEE Proceedings-, vol.
153, pp. 189-195, 2006.
[15] Phillips, J.; Areno, M.; Eames, B.; Dasu, A.; “An
FPGA-Based Dynamic Load-Balancing Processor
Architecture for Solving N-body Problems”; Proceedings of
the 10th Annual High Performance Embedded Computing
Workshop, 2006.
[16] Phillips, J; Areno, M.; Rogers, C.; Eames, B.; Dasu, A.;
“A Reconfigurable Load-Balancing Architecture for
Molecular Dynamics”; Proceedings of the 14th Annual
Reconfigurable Architecture Workshop, 2007.

Figure 8 – Amount of output data waiting to be processed by LJPC units within the MD architecture.

