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Abstract
This paper proposes a novel approach to the 
automated generation of hardware micro-
architectures targeting FPGA devices.  The approach 
offers both high level architecture synthesis and 
VHDL generation based on dataflow graphs, as well 
as the generation of an architecture-level 
functional/performance simulator that can be used for 
quick and accurate testing of the design.  We 
demonstrate the use of this approach through the 
derivation of architectures to implement
computational kernels commonly encountered in 
Molecular Dynamics simulations.

1 Introduction
It is well known that the performance of 

applications on Field Programmable Gate Arrays 
(FPGAs) is highly dependent on the underlying 
sophistication of micro-architecture design features, 
such as pipelining and concurrency. The complexity of 
real world applications and algorithms tends to push 
the design burden farther away from an automated 
process and into the realm of expert VSLI design 
engineers. While there have been numerous efforts to 
automate the conversion of algorithms written in C or 
C++ to synthesizable HDL, there still remains a large 
amount of research that needs to be carried out to fully 
exploit those efforts. Instead of focusing on the 
syntactic aspects of high level languages, we intend to 
compliment other approaches by focusing on the 
semantics. We propose a methodology to 
automatically derive the micro-architecture for an 
algorithm based on the machine independent control-
data-flow-graph representation of the algorithm. To 
facilitate a rapid evaluation of both the functionality 
and performance of the generated  micro-architecture, 
we provide a C++, approximately-cycle accurate, 
simulator which implements the salient features of the 
micro-architecture, but in a software-based 
environment amenable to rapid-turnaround testing and 
evaluation.

Using FPGAs as targets, this tool creates both a
VHDL and C++ representation of a given loop-
unrolled dataflow graph (DFG). Generation of these 
DFGs is facilitated through the use of a new visual 
modeling tool, based on the Generic Modeling 

Environment (GME) [1]. The DFGs are composed of
standard mathematical operations, such as addition, 
multiplication etc, and capture the semantics of a 
software algorithm. 

From these DFGs, a micro-architecture is 
generated by way of a modified force-directed 
scheduler (FDS) [2]. Our modified FDS
implementation is capable of performing loop 
unrolling, critical path relaxation, and graph 
decomposition, in an attempt to derive a near-optimal 
hardware design implementation. The FDS 
implementation simultaneously determines the 
schedule and resource allocation appropriate for a 
given loop-unrolled DFG.  From this information, a 
VHDL representation is generated that targets the 
Xilinx ISE development environment.  Additionally, a 
C++ simulator is also generated that may be used to 
evaluate the design and provide quick feedback on the 
impact of design alternatives.

To elucidate the details of this methodology and 
associated tool, the paper has been structured in the 
following manner.  Section 2 will present related work 
that has been performed in this area.  Section 3 will 
present information of the development of the GME 
meta-model and DFG generation. Section 4 will 
discuss the FDS implementation and environment 
generation prior to the VHDL and C++ code 
generators. Section 5 will discuss the generation of 
VHDL and C++ code representations.  Section 6 will 
show the results that have been obtained through the 
use of the tool.  Finally, section 7 will present 
additional work to be done and the conclusion of this 
paper.

2 Related Work
Several tool are available today capable of 

generating hardware architectures directly from higher 
level languages, such as C.  These include, but are not 
limited to, Handel-C [3], HardwareC [4], Mitrion-C 
[5], and PACT HDL [6].  In addition to C-type 
languages, other tools derive architectures from 
assembly language [7], Matlab [8], and Simulink [9]. 
Such approaches attempt to raise the level of 
abstraction offered to the user to support hardware
design, presenting an environment that is more 
familiar to a larger community of developers.  The 



downside of this approach is that by using too high of 
an abstraction level, the tool is not able to capture all 
of the relevant information that may be available 
through the designer. The development of hardware 
architectures can be better optimized when the tool 
works together with the designer, not in place of a 
designer.  Higher level languages should be used as a 
way of defining what the architecture is doing, not 
how it is doing it.  

PACT HDL [6] was developed with the idea of 
creating power aware architectures.  However, the 
scheduling methodology used does not lend itself to 
low resource allocation.  Additionally, it does not 
support the use of any other scheduling methodologies 
aside from a window size, priority-based approach 
using ASAP and ALAP scheduling.  HardwareC [4] 
suffers from a lack of abstraction, as the input into the 
program is virtually identical to Verilog, with only a 
few minor syntactical differences.  Additionally, 
pipelining, a method commonly used in FPGA 
architectures, is not supported.  Handel-C [3] provides 
one of the strongest emulations of the C languages, but 
requires the designers to specify parallel portions of 
code, rather than having the program automatically 
derive this information. Part of this is due to its lack 
of support for loop unrolling, a technique commonly 
used to expose instruction level parallelism. The 
designer should be able to interact with the program in 
the creation of the design, but not be responsible for 
every detail. Mitrion-C [5] appears to be the strongest 
of the candidate C-to-HDL programs.  Rather than 
generating a schedule for the received code, a network 
is created that is capable to moving data from one 
processing element to another.  The architecture is 
then presented with a data packet switching problem, 
rather than an instruction scheduling problem.
Mitrion-C also uses a virtual processor, optimized 
based upon the code received, to execute instructions.  
The downside of this approach is that the program 
raises the level of abstraction so far that it almost 
prohibits the designer from having any impact on the 
generated hardware architecture.  This problem 
manifests itself specifically when code relies upon 
data being entered at run-time.  Without the help of the 
designer, hardware generation tools have no way of 
determining how often a segment of code may 
execute, and will therefore have no way of properly 
allocating resources to handle such code in an optimal 
fashion.  Mitrion-C therefore provides efficient, but 
not optimal, hardware implementations.

The FREEDOM compiler [7] is a platform 
independent HDL generator that can use any generated 
assembly language file, along with an architecture 
description file, to generate VHDL code.  The 
downside of working directly on assembly language 

files, as opposed to C files, is the loss of critical 
information declared in the C language.  For instance, 
the compiler removes name dependencies by 
eliminating “unnecessary” writes to the same memory
location.  For any system that makes use of volatile 
variable, this can be critical.  The tool also lacks the 
ability to customize the hardware design to the needs 
of the designer, but rather depends on the designer to 
customize the input appropriately.  A tool called 
Compaan [8] translates algorithms specified in the 
Matlab language into hardware architectures.  At the 
time this paper was written, no actual FPGA 
implementation had been created yet, though it had 
been discussed [10].  

Additional relevant work is in the area of 
Molecular Dynamics (MD), a collection of algorithms 
used to analyze the interaction of molecules within a 
closed environment.  The driving force behind the 
development of the tool described in this paper was to 
verify, and possibly improve, an existing FPGA-based
implementation of a portion of a MD application [16].  
The use of an FPGA for solving N-body problems, 
such as MD, was explored by Lienhart et al [11].  
Using application specific processors on FGPAs was 
tested by Azizi et al [12].  Other attempts have been 
made to separate portions of the calculation, such as 
moving Lennard-Jones and Coulombic force 
calculations onto an FPGA, which communicates with
the driving software, run on a standard CPU [13].
Further work has also been done in an attempt to 
speedup time intensive operations, such as double-
precision floating-point division, through the use of 
pipelining [14].  For our approach, we are using an 
FPGA similar to [10], but with a novel architectural 
approach discussed in [15] [16].

The novelty of the tool being presented here is not 
in its ability to generate VHDL and C++ 
representations, but the method used to determine 
resource allocation, create a schedule, and provide 
multiple possible implementations based upon a set of 
constraints given to the program through the use of a 
modified FDS algorithm. The tool provides a visual 
modeling environment to support interaction with the 
designer, allow for the input of architecture critical 
specifications and operational unit customization.  The 
development of this tool is divided into three 
components: GME front-end, FDS implementation 
and environment creation, and VHDL and C++ code 
generation, shown in Figure 1. Each of these will now 
be discussed.

3 GME Front-end
The Generic Modeling Environment (GME) is a 

meta-programmable modeling framework that may be 
used to create not only domain-specific models, but 



corresponding domain-specific modeling languages. 
GME does not provide inherent support for any one 
specific domain, but rather may be used by the 
developer to create custom modeling languages and 
paradigms which encode the visual notations and rules 
inherent to the domain and known by domain 
engineers. Paradigms are similar to grammars used by 
programming languages. Their purpose is to define the 
rules for how elements within the language may be 
used. Since GME does not provide native support for
any modeling language or paradigm, it must be 
configured in order for the user to properly capture the 
relationship between the real-world and the elements 
defined within the GME model.

Although the GME model may do a very effective 
job at modeling a given environment, it makes no 
attempt to determine what the model is supposed to 
mean. To decipher the meaning of a specific GME 
model, an interpreter is created. Just as the keyword 
"double" means nothing without a C or C++ compiler, 
the same is true of a GME model without an 
interpreter. The interpreter could therefore be 
compared with a compiler, in that it is used to make 
sense out of what is otherwise nothing more than a 
collection of images.

The "syntax" that the interpreter uses is derived 
from what is called the meta-model. A meta-model is 
what is created in GME as the model of a domain 
specific modeling language. The meta-model 
implemented for this paper is one that models DFGs 
and therefore facilitates the creation of nodes, edges, 
operational units, and architecture specifications.  It 
also allows the scaling to large designs by handling

multiple DFGs within a single project. Once a DFG is 
properly modeled, the interpreter analyzes the model 
and creates data files that may be used by the force-
directed scheduler to determine a schedule for the 
DFGs. The steps for how this was accomplished will 
now be covered.

3.1 GME Meta-model
The GME Meta-model, shown in Figure 2, offers 

a hierarchical structure for developing hardware 
designs.  A Design may contain multiple dataflow 
graphs, represented by the DataFlowGraph model, and 
must contain one, and only one, ArchDesc model, 
used to enter specifications about the target 
architecture.  ArchDesc models contain actual 
operations, which consist of standard mathematical 
operations (i.e., addition or subtraction), logic 
operations (i.e., less than or equal to), and I/O 
operations (i.e., inputs or outputs).  Each operation has 
an attribute for the area consumption and latency.  
Currently, such fields must be specified directly by the 
designer, but future work will integrate a pre-
generated library of these values, corresponding to 
their implementation on specific FPGA chips.  An 
additional atom, called the Chipset, is required and is 
used to specify the target architecture, as well as 
constraints to be imposed on the generated hardware 
architecture.

3.2 GME Interface
The GME meta-model is never actually seen by 

the designer.  Rather, it is used to govern and interpret 
the design.  Using GME, the designer may create a 
Design, with its associated ArchDesc and 
DataFlowGraph models.  The designer inserts 
whatever components will be needed for the design 
into the ArchDesc model, and then creates instances of 
these customized components in the DataFlowGraph 
model.  Connections may then be instantiated to create 
precedence relationships between multiple nodes 
within the DFG.

3.3 Interpreter
Once a design has been created in GME, an 

interpreter is used to parse the design and generate a 
DFG file and architecture description file that will be 
used, by the FDS implementation, to derive the 
hardware architecture.  The architecture description 
file uses the following syntax:

“OPERATIONS”
<operation type> <operation latency> <operation 
area>
….
“CONSTRAINTS”
<type of constraint> <constraint value>

Figure 1 – Overall tool flow.



Operation types were listed in section 3.1.  As defined 
by the user in the ArchDesc model, the latency and 
area of each operational unit is also declared.  The 
constraints currently supported by the tool are listed in 
Figure 2 under the Chipset atom.  The dataflow graph 
files use this syntax:

//Node declaration
“NODE” <node id number> <operation type>
…..
//Edge declaration
“CONNECTION” <source node ID> <destination 

node ID> <parent type>
…..

Each operation declared in GME is given a unique ID 
number which is used to identify the node in the DFG 
file.  Connections are made between two nodes by 
declaring a connection, and then providing the 
corresponding node ID numbers for the source and 
destination.  The parent type is used to preserve the 
distinction in non-commutative operations, like 
subtraction and division.  The parent type can be left, 
right, or both, to emulate first, second, and both 
operators, respectively.

The goal of this approach is to provide an 
interface where the designer can still specify certain 
constraints on the system which can have a large 
impact on the overall system design, but still provide 
an high enough level of abstraction to make the tool 
intuitive to use.  The generated files may then be used 
by the designer to invoke the FDS scheduler 
implementation to derive the hardware architecture.

4 FDS Implementation and Environment 
Creation

The FDS algorithm used in this tool is a modified 
version of the original algorithm [2].  The original 
algorithm prioritizes the scheduling of nodes with a 

DFG based upon their location in regards to the 
critical path of the system, as well as their impact on 
resource allocation.  This is done by creating a domain 
of values for each node, representing the possible 
starting and completion times that each node may be 
assigned.  Nodes along the critical path of the system 
are scheduled as-soon-as-possible (ASAP), which then 
further constrains the starting and completion times of 
other nodes within the system.  Nodes not on the 
critical path are scheduled by using a percentage 
calculation that determines the effect on the resource
requirements of the system by scheduling the nodes at 
specific times.  Since the FDS algorithm attempts to 
minimize the resource needs of a system, the nodes are 
scheduled in a manor that accommodates this 
constraint.

In an attempt to utilize the powerful 
parallelization capabilities of FPGAs, loop unrolling is 
used to expose instruction level parallelism.  In 
addition, the ability to perform critical path relaxation 
is also provided to the designer.  Traditional FDS 
discovers the critical path of the graph, and imposes a 
requirement that all operations complete at, or before,
the completion of all nodes on the critical path.  
Critical path relaxation facilitates the designation of a 
constraint which allows operations in the DFG to 
complete up to a fixed time after the length of the 
critical path of the graph.  Critical path relaxation can 
result in further reductions to resource requirements 
when flexibility exists in the execution time 
requirements of the system.  Experimental results 
showed that the FDS algorithm did not function as 
well when critical path relaxation was employed.  To 
combat this problem, a new approach was taken to 
modify the available start and completion times of 
nodes with the DFG.  This new algorithm attempts to 
balance the extra time allotted by critical path 
relaxation among the multiple number of iterations 
instantiated through loop unrolling.  Additionally, it 

Figure 2 – GME meta-model.



reduces the amount of time needed to derive an 
implementation using the FDS algorithm by reducing 
the number of operations that must be considered at 
each time step.  To implement this, the following 
algorithm is used, shown in Figure 3.  Based up the 
iteration each node is associated with, and the total 
number of iterations being implemented, a certain 
amount is added to the earliest start time and latest 
completion time, proportional to the amount of 
additional time allocated through the use of critical 
path relaxation.  The results of this implementation 
will be discussed in section 6.

The environment is the collection of all values 
and variables needed in order to generate a VHDL 
and C++ representation of the derived hardware 
architecture.  To create the environment, a collection 
of variables are instantiated and populated using the 
results of the FDS implementation.  This includes a 
list of all nodes in the DFG, as well as all required 
operational units and the number of each that is 
required to execute the generated schedule.  To 
manage this information, the environment is created 
and used to create the VHDL and C++ code.

An important step to creating the environment is 
to derive the required memory needs within the DFG.  
Memory requirements within a DFG are the result of 
a difference in the time when values are produced 
and consumed.  To determine where memory 
elements would be needed, a simple algorithm was 
developed that compares the start time, plus latency, 
of each node with the start time of each of its 
predecessors.  Any time these two values are not 
equal, a memory element is instantiated.  To support 
the reuse of memory elements, shift registers are used 
to store the data.  This allows for an optimization in 
the number of elements required by allowing reuse of 
memory elements within a single iteration, as well as 
between multiple iterations, when identical memory 
needs are present.  Whenever identical memory needs 

exist, as measured by the depth of the shift register, if 
the needs occur on separate clock cycles, the memory 
element may be reused.  Additional optimizations are 
possible, but are left as future work and will be 
discussed in section 7.

The final step in creating the environment is to 
develop an ordered list of nodes based upon their 
scheduled execution time.  The purpose of such a list 
is to reduce the computational complexity of the 
VHDL and C++ code generation.  By pre-sorting the 
nodes in the DFG, the algorithm must execute only 
on clock cycles where changes are needed.  
Otherwise, the computational complexity of 
analyzing what changes need to occur on what clock 
cycle is O(mn), where m represents the number of 
clock cycles in the derived schedule, and n represents 
the number of nodes.  With the ordered list, the 
complexity reduces to O(n), which can results in a 
large performance gain, especially considering this 
algorithm must execute during both the VHDL and 
the C++  code generation.

The implementation of the modified FDS 
algorithm and environment provide the designer with 
another opportunity to customize the design by 
specifying the number of loop unrolls to perform, as 
well as the amount of critical path relaxation to 
perform.  It also may derive architectures with a 
much smaller footprint, as opposed to traditional 
implementations of the FDS algorithm.  The memory 
allocation method also removes the need for the 
designer to determine such needs a priori.

5 VHDL and C++ Code Generation
  Once the environment has been properly 

established, the program may then invoke the VHDL 
and C++ code generators.  The VHDL code may be 
used to develop hardware architectures in Xilinx ISE.  
The purpose of the C++ code is to provide the 
designer with a simulator of the derived hardware 

Figure 3 – Modified FDS algorithm.



architecture.  This allows the designer to see the 
results of modifications to the design without the 
needed for time intensive synthesis and place and 
route routines.  The C++ simulation also allows the 
designer to determine the number of clock cycles 
required to complete execution of the derived 
architecture.  In this way, the designer is given fast 
feedback on how modification to the architecture will 
affect its results. 
5.1 VHDL Code Generation

VHDL code generation entails the process 
required to generate not only VHDL files, but also all 
files that will be needed in order to instantiate Xilinx 
IP Coregen components. To create a VHDL 
representation of the derived hardware architecture 
specific to Xilinx ISE, a main controller file is 
needed.  In addition, .xco and .vhd files are generated 
an instance of each operational unit using Xilinx IP 
Coregen.  By using Coregen to generate operational 
components, designers are provided with a maximum 
amount of flexibility in how the component is 
instantiated, i.e. latency, pipeline stages, and memory 
initialization.

In addition to creating Coregen files, but prior to 
the creation of the main controller file, a node to 
operation mapping must be made.  Each node in the 
DFG must be associated with a specific operation 
unit before the main controller file can be developed.  
The mapping is performed by using a simple greedy 
algorithm.  This algorithm works by examining each 
node in the system against the available execution 
slots of the operational units.  If an operational unit 
has already been allocated to execute a node on a 
given cycle, it is unavailable.  If the operational unit 
is not already allocated to another node, a mapping is 
created and that operational unit’s status for that 
clock cycle is set appropriately.  Since all functional 
units are assumed to be fully pipelined, the execution 
of an operation effectively consumes only one issue 
slot for each unit. The scheduler guarantees that at 
least one operational unit will be available for every 
node in the DFG at the required time.

The main controller file is the heart of the VHDL 
generated code.  Contained within the controller are 
the initializations of the required operation units, 
instantiations of signal to connect the operational 
units to the main controller, and a case statement to 
determine the flow of information through the 
system.  The case statement makes use of the ordered 
list created during the environment generation.  The 
nodes in this list are traversed and a case is declared 
for each unique time in which a node is scheduled.  
Starting at the beginning, a new state is declared for 
the starting time of the first node, and a local variable 
designated to track the time is set equal to this value.  

Once all data has been properly channeled, the 
program moves to the next node and compares its 
starting time with the current time value.  If they are 
the same, a new state is not needed and the data flow 
statements to mange this node’s data exchanges are 
made within the current state.  Otherwise, a new state 
is created, the current time is set equal to this node’s 
start time, and the new data flow statements are made 
in this new case.  This continues until all nodes have 
been visited.

The result of this process is a complete set of 
files that may be used by Xilinx to synthesize the 
derived architecture.  The mapping, translate, and 
place and route routines require a .ngc file for each IP 
Coregen component, which is currently not 
supported, but is included in the list of future work.
5.2 C++ Code Generation

The C++ code generation handles the creation of 
a group of classes that may be used to simulate the 
derived hardware architecture.  The initial code 
representation, whether done in C, Matlab, or 
assembly language, merely shows what operation the 
hardware is to perform.  The purpose of the C++ 
representation is to show how the derived 
architecture works.  These classes emulate the 
hardware generated previously in VHDL, and allow 
the designer to test the architecture in a faster manner 
than through synthesis of the hardware.  For instance, 
a primary concern of designer may be how quickly 
the derived architecture can complete the required 
calculations.  The generated C++ simulator may be 
used to quickly deliver such information, as well as 
to determine performance metrics and the locations 
of bottlenecks within the design.

The C++ representation is made using two 
classes, the Element class and the Component class.  
The Element class is used to represent each of the 
different operational units that are currently 
supported, containing information on the latency and 
operation type of each unit.  The Element class is 
written using a template, allowing it to be used for 
integer or pointing-point representations.  The 
Component class is similar to the main controller 
created in the VHDL representation.  It contains 
functions for initializing and executing the design, as 
well as retrieving the current status of the system.  
These functions are automatically populated with the 
required instances of Elements, as well as a switch 
statement that works identically to the case statement 
in VHDL.  The designer is only required to call the 
initialize function and execute function to simulate 
the design.  Functionality is provided to see the 
current state of the system, but currently only returns 
the local time.  Additional changes are planned to 
have this function display the current information 



contained within each stage of the unit’s pipeline, as 
well as data being stored or currently on connections.  
This information would be similar to a register dump 
on a standard microprocessor.

The goal of this portion of the program was to 
provide the designer with a quick and easy way to 
verify his/her design, as well as to implement 
changes and see how they affect the design.  By using 
C++ to create this simulator, these goals have been 
met.  The designer may use any standard C++ 
compiler that supports the use of the STL to simulate 
their design.  Changes in the execution of these units, 
such as pipeline stages, are easy to make.  Rather 
than having to re-synthesize the design, the designer 
merely has to recompile the code to see how such 
changes can affect the system.
6 Results

Several key new ideas were presented in this 
paper.  This section has been developed to show the 
results of the implementation of these features.  
Results will be presented on the modified FDS 
algorithm, effects of critical path relaxation, and the 
results of deriving a micro-architecture for a previous 
MD implementation.

6.1 Modified FDS Algorithm Using Graph 
Decomposition

To show the results of the graph decomposition 
and modified FDS algorithm verses the original FDS 
algorithm, implementations of the distance 
calculation (DC) and Lennard-Jones potential 
calculation (LJPC) were developed.  The results of 
these implementations using the original and 
modified FDS algorithms are shown in Figures 4 and 
5, respectively.   These figures show the resulting 
resource allocation for floating-point adders, 
subtractors, and multipliers, using from 1 to 57 
iterations of the DC unit and 1 to 40 iterations of the 
LJPC unit.  The required units using the modified, 
graph decomposition method are labeled with a (gd) 
next to the unit name.  As shown in the DC imple-
mentation, the modified version derived architectures 
needing only half the number as the original, on 
average.  The same is true of the LJPC 
implementation.

The other strong support for this implementation 
was in the reduction of time required to derive these 
architectures, using the two approaches.  Figure 6 
shows the time required to derive each architecture, 
as done on a Pentium 4, 2.0GHz computer.  Each 
version of the algorithm generated an architecture for 
the LJPC unit, starting with a single iteration, up to a 
total of 40 iterations.  The time taken to derive each 
architecture was measured and is presented in this 
figure.

6.2 Critical Path Relaxation
The purpose of critical path relaxation (CPR) is 

to show the possible changes in resource 
requirements by relaxing the critical path by some 
measure of time, or cycles.  The results of this are 
shown in Figure 7.  This figure shows the change in 
resource requirements as the critical path is relaxed, 
starting at 0% relaxation to 100% relaxation, by 
increments of 10%, using 57 iterations of the DC 
unit.  As can be seen in this graph, a CPR of only 
10% resulted in a decrease of 75% of required 
resources, verses no relaxation.  As may also be 
evident, at certain times plateaus are reached where 
additional, but not substantial, relaxation may not 
create increased benefit in reduction of resource 

Figure 4 – Operational unit allocation for DC 
unit with 100% CPR.

Figure 5 – Operational unit allocation for 
LJCP unit with 100% CPR.



requirements.  This type of information, together with 

throughput, utilization, and latency constraints, can 
greatly affect the automated generation of hardware 
architectures.

6.3 MD Architecture Generation
The MD architecture referenced previously was 

implemented in an attempt to produce run-time load-
balancing of an N-body problem.  The result of this 
architecture’s ability to perform such load-balancing 
is shown in Figure 8.  The purpose of this tool was to 
validate the design initially created for this project.  
The two main components of the MD algorithm, the 
DC and LJPC, have been run through this tool and 
generated the results shown in Figures 4 through 7.  
From these results, analysis has been performed to 
determine where the optimal solution lies.  Due to the 
load-balancing problem faced by N-body problems, 
generating the entire architecture autonomously is a 
very taxing problem, and currently beyond the 
capabilities of this tool.  However, it has verified our 

initial design as being effective, and efficient, but 
took only a very small fraction of the time.

In addition to verifying the generated VHDL, we 
were able to use the generated C++ code to analyze 
the performance of this architecture.  We were 
quickly able to determine the number of clock cycles 
required to complete a given number of calculations, 
as well as to generate information on the current state 
of internal elements within the design.  The values,
shown in Figure 6, were generated through the use of 
the C++ simulator.  Although this feature has not yet 
been completely integrated into the C++ simulator at 
this time, it has proven to be accurate and is currently 
in the process of being included.

7 Conclusion
We have presented a new and novel 

methodology for the automated development of 
hardware architectures.  We have used this tool to 
verify our initial design and have found it to be 
extremely successful at generating verifiably 
functional code in both VHLD and C++ in a fraction 
of the time.  A large amount of future work remains 
to be done in order to better customize the hardware 
design.  GME provides an excellent front- end that 
greatly facilitates the incorporation of design 
operations and constraint implementation.  
Additional tools, such as Mozart, are also being
added to provide better constraint satisfaction and 
optimization for those wishing to customize 
architectures in the areas of latency, power, area, and 
throughput.

7.1 Additional Work
Additional work still needs to be performed in 

each other three major areas discussed in this paper.  
Much of the work that still remains has been 
discussed previously in this paper.  Expansion of 
supported elements in GME, an automated DFG 
creation tool, and further constraint satisfaction 
analysis are the three primary areas being explored at 
this time.  Given the results seen so far, we are 
confident that the improvements being made will 
help this tool to become an excellent resource for any 
hardware designer.

Figure 6 – Time comparison of standard vs. 
modified FDS algorithms.

Figure 7 – Comparison of resource 
requirements for 57 iterations of the DC unit

and varying CPR.
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Figure 8 – Amount of output data waiting to be processed by LJPC units within the MD architecture.


